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ABSTRACT 

 

Animal movement patterns are influenced by a combination of internal and external drivers 

that interact synergistically and ultimately drive animals’ behaviour. Examining the factors 

behind these influences and their role in guiding animals' choices is crucial for 

comprehending movement patterns. Exploring the spatial ecology of African savanna 

elephants (Loxodonta africana) provides vital information, particularly within the context 

of a fenced reserve in South Africa, that is important for the effective and efficient 

management and conservation of both the species and its habitat. In pursuit of this 

objective, Hidden Markov Models (HMMs) and hourly Global Positioning System fixes 

were used to distinguish movements of two matriarchs within the Selati Game Reserve 

(SGR) into three distinct states. Subsequently, the analysis of the influence of four 

environmental variables (terrain roughness, distance to nearest road/path, distance to 

nearest water source, and NDVI) on the probability of persistence in, and transition to, a 

particular state between June 2022 and December 2022 was conducted. The results showed 

that all the different covariates consistently influenced elephant movements. Particularly, 

when the terrain was rougher, matriarchs tended to switch to state 1. Moreover, they 

showed to use the road network to navigate the landscape faster during the dry season, and 

to exploit roadside vegetation during the wet season. Additionally, persistence in state 3, 

the farthest from water sources, was found with direct and accurate movement patterns. 

Finally, matriarchs consistently occurred in state 1, when NDVI values were highest, and 

in state 3, when NDVI values were lowest. More in-depth analyses can be carried out to 

assess whether these results are confirmed on a larger scale, for example over subsequent 

years. Thus, this study has provided vital information for improving conservation 

management of elephant within fenced reserves, where their proper management is crucial 

for the well-being of the entire ecosystem. 

 

 

Keywords: movement ecology; African elephant; fenced reserve; external drivers; 

HMMs; South Africa.  
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1 INTRODUCTION 

 

1.1 Animal movements 

The field of movement ecology aims to understand why organisms move through space 

following certain patterns and the possible constraints that condition them (Patterson et al., 

2017). Animal movement patterns inherently involve internal and external drivers, which 

interact synergistically, thus impacting animal choices (Mckellar et al., 2015). Therefore, 

the study of these movement patterns allows ecologists to identify the spatio-temporal 

distribution of the species analysed, as well as the influencing factors of their movement 

patterns between different environments (Birkett et al., 2012). Despite the growing 

importance of animal movement studies in ecology and conservation biology, due to 

considerable interest in this topic over the past decades, research has commenced to 

emphasise animal movements in a quantitative manner only in the last decade (Mckellar 

et al., 2015). 

Both marine and terrestrial animals move to optimize their chances of survival and 

reproductive success, ultimately leading to their physical growth and overall fitness 

(Whoriskey et al., 2017). Furthermore, animal movements offer advantages by potentially 

reducing competition within a species and facilitating the discovery of new or improved 

resources (Bowler et al., 2005). Consequently, risk scenarios might thus be avoided and 

the probability of finding new mates enhanced (Vogel et al., 2020). Additionally, 

understanding movement patterns concerning different habitats can aid in discovering the 

motivations behind the choice of a specific habitat (Nathan et al., 2008). For instance, 

several papers have found that in richer and more varied landscapes, large herbivores show 

slower movements and more frequent turning behaviour, whereas, in areas with less forage 

value, they turn less and show faster pacing patterns (Venter et al., 2015; Fryxell et al., 

2008; Senft et al., 1987). This change in movement pattern may indicate that forage 

availability influences the spatial behaviour of the animals (Vogel et al., 2020).  In this 

regard, it has been demonstrated that spatial variations in animal movement patterns are 

the result of the non-homogeneous distribution of vital resources, including habitat type, 

water resources and high-value foraging areas (De Knegt et al., 2007; Apps et al., 2001). 

Furthermore, movements are also influenced by variations in time, i.e., the seasonal or 

annual periods when essential resources are accessible to the animals themselves. In turn, 
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abiotic factors, such as rainfall and temperature, influence the seasonal availability of the 

resources (Birkett et al., 2012). As evidence, the latter has been widely ascertained for 

mountain caribou (Apps et al., 2001), as well as for large African herbivores (de Knegt et 

al., 2007). 

Animal movements play a crucial role in maintaining key ecosystem processes, 

including also seed and natural fertiliser dispersal (Doughty et al., 2013; Guimaraes et al., 

2008). In turn, such ecosystem processes contribute to ecosystem health and steadiness 

(Gravel et al., 2016), as well as enhancing biodiversity (Berti et al., 2023). Despite this, 

movements also carry a significant energy expenditure and an increased risk of mortality. 

Fahrig (2007) found a certain association between fast, linear movements and the crossing 

of risky habitats. This has been to some extent confirmed by several authors who have 

found an increase in stepping speeds in landscapes with high anthropogenic presence 

(Karelus et al., 2017; Stillfried et al., 2017; Wang et al., 2017). Human-occupied 

landscapes influence animal movements, as although they occasionally have high foraging 

areas, they are still avoided by wildlife given the increased risk of mortality or conflict 

(Vogel et al., 2020).  

Movement is at the core of individual biology and the decisions made are reflected 

in the movements that are performed, with both direct and indirect repercussions on various 

levels (Beirne et al., 2021). At the individual level, the movement patterns exhibited by 

individuals directly determine their fitness, as their capacity for self-sufficiency, survival, 

and mating depend on them (Kays et al., 2015; Owen-Smith et al., 2010). At the population 

level, the movement trends of one population can affect those of other populations, 

modifying possible future interactions (Spiegel et al., 2017; Morales et al., 2010). At the 

ecosystem level, the movement choices of animals play an important role in the 

mobilisation of dispersed nutrients in the ecosystem, as well as regulating the degree of 

impact of the individual within the ecosystem it inhabits (Earl and Zollner, 2017). In light 

of the above, the conservation not only of a focal species but also of the entire ecosystem, 

of which it is a part, is highly dependent on understanding and learning about how animals 

move, the motivations behind the choices that govern these movements, and the 

consequences of such choices (Beirne et al., 2021). The pervasive recognition of the vital 

role of the identification of such patterns and the variation they entail is increasingly 

supported by high-performance tracking technologies (Beirne et al., 2021; Birkett et al., 

2012). Such GPS devices have allowed a quantitative collection of fine-scale animal 

movements data (Kays et al., 2015; Cagnacci et al., 2010;), fostering the emergence of 
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increasingly up-to-date, accurate and precise statistical models capable of correctly 

analysing this type of data (Hooten et al., 2017).  

 

 

1.2  Statistical modelling on movement data 

A significant number of papers on statistical modelling of animal movement have been 

concerned with the insight-based attempt to distinguish between time series of movement 

in different behavioural states through the application of state-switching modelling 

(Michelot et al., 2023). The main explanation for this common choice is that displacement 

patterns are a reflection of animal behaviour, which in turn is a product of the individual's 

reaction to physiological impulses and the ecosystem (Whoriskey et al., 2017). Therefore, 

the identification of these hidden drivers of animal movement (a.k.a. behavioural states) is 

necessary to further the knowledge of how and why animals decide to exploit available 

areas (Whoriskey et al., 2017). As evidence, in the last 20 years, different research has 

classified displacement routes into distinct states, on the basis of individual motivations; 

among these papers, the following is the most exhaustive: Morales et al. (2004) 

distinguished encamped and exploratory states of elk individuals (Cervus elaphus); 

Pomerleau et al. (2011) classified bowhead whales (Balaena mysticetus) movement 

patterns as transient and resident; Franke et al. (2004) described three different states, 

namely bedding, feeding and relocating, in woodland caribou (Rangifer tarandus); and 

Bagniewska et al. (2013) determined three distinct dive states in the semi-aquatic 

American mink (Neovison vison). Through the analysis of such behavioural states, it is 

possible to comprehend how animals utilise resources within the ecosystem (Fryxell et al., 

2008; Forester et al., 2007) and, to a greater extent, to investigate population dynamics 

(Morales et al., 2010). The identification of these characteristics, especially in endangered 

species, can be a crucial tool in the service of conservation decision-makers (Anadón et 

al., 2012; Pomerleau et al., 2011; Lusseau, 2003). Moreover, with regard to migrating 

animal populations, it is critical to determine their movement patterns in space and time 

and the factors that drive them, when the objective is their conservation and management 

(Schick et al., 2008; Berger, 2004; Thirgood et al., 2004). A lack of knowledge of these 

dynamics can pose a risk to animal safety and, indirectly, can lead to an intensification of 

human-wildlife conflicts (Harris et al., 2009; Bolger et al., 2008). 
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Refinements in location devices have enabled data to be recorded on fine spatial 

and temporal scales. Thus, such high-precision data can be combined with external 

variables, for instance, environmental and topographical covariates, providing meaningful 

information on how extrinsic factors affect movement behaviour (see Langrock et al., 

2014; Patterson et al., 2009; Morales et al., 2004). As a result, numerous works have 

determined the fine-scale movement behaviour of large mammalian species, including elk 

(Fryxell et al., 2008), moose (Alces alces) (Demarchi, 2003), caribou (Apps et al., 2001) 

and African elephant (Loxodonta africana) (Wittemyer et al., 2008; Cushman et al., 2005). 

Many of these fine-scale movement studies define different behavioural states between 

seasons and consider multiple time scales (e.g., days, weeks, months). The authors often 

analyse seasonal patterns using meteorological proxies, which generally include 

temperature and precipitation.  

Statistical modelling for partitioning movement patterns into distinct unobserved 

states has generally been developed and adapted using more generalist State-Space Models 

(SSMs) (Jonsen et al., 2013; Patterson et al., 2008; Schick et al., 2008; Jonsen et al., 2005) 

or Hidden Markov Models (HMMs) (Langrock et al., 2012; Patterson et al., 2009; 

Holzmann et al., 2006; Morales et al., 2004), usually assuming a discrete or continuous 

time structure (Blackwell, 2003). HMMs have been applied for studying movement 

patterns of a variety of animals, including marine animals, such as tunas (Patterson et al., 

2009) and white sharks (Towner et al., 2016), birds, in particular, woodpeckers (Mckellar 

et al., 2015), insects, with a study on fruit flies (Holzmann et al., 2006), and mammals, 

including caribous (Franke et al., 2004), and panthers (van de Kerk et al., 2015). 
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1.3 African Elephant (Loxodonta africana) 

 

1.3.1 Taxonomy, distribution, and biology 

 

Belonging to the class Mammalia and order Proboscidea, the elephant is classified within 

the family Elephantidea, of which only two genus have extant species: the genera 

Loxodonta and Elephas (Shoshani and Tassy, 2004). The latter is represented only by the 

species of the Asian elephant (Elephas maximum), which in turn comprises three 

subspecies (Soshani et al., 2001). Two species belongs to the genus Loxodonta, the African 

savanna elephant (Loxodonta africana, Blumenbach, 1797) and the African forest elephant 

(Loxodonta cyclotis, Matschie, 1900) (Grubb et al., 2000). From this point forward, this 

study exclusively pertains to the African savanna elephant, which will be referred to as the 

African elephant or simply as ‘elephant’.  

Once characterised by a large-scale homogeneous presence across the African 

continent, the African elephant is currently distributed across a highly fragmented and 

discontinuous landscape (Shaffer et al., 2019). Despite this, it is still present in 37 countries 

in sub-Saharan Africa, with a total population estimated at between 550,000 and 700,000 

individuals (Shaffer et al., 2019). According to the latest IUCN report, of all 37 countries, 

southern Africa has the largest number of elephants of all four regions. East Africa is in 

second place, followed by Central Africa and West Africa, with the lowest number of 

individuals per region (Thouless et al., 2016). Due to high habitat loss and fragmentation, 

elephant’s current range is 3.3 million km², which is only 22% of the African continent 

(Campos-Arceiz and Blake, 2011; Blanc et al., 2007). 

The African elephant is one of the most dominant animals across the Sub-Saharan 

African countries. It is the largest extant terrestrial species, where adult males reach a body 

weight of about six tonnes and adult females between two and three tonnes (Laursen and 

Bekoff, 1978). African elephants are long-lived animals, which can attain the age of 65. 

However, the average longevity in their natural environment is estimated at 24 and 41 years 

for males and females, respectively (Moss, 2001). Elephants exhibit allometric growth 

between the sexes: females grow until the age of 30, after which they show an abrupt 

slowdown in growth rate (Hanks, 1972), while males continue to grow beyond the age of 

45 (Poole et al., 2011). Furthermore, females are already sexually mature at around nine 

years old, recording an average age of successful procreation in nature of around 14 years 
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(Moss, 2001). In contrast, although males reach sexual maturity at 11 years old, they do 

not manage to compete with more mature males in their natural environment until their 

20s, thus becoming truly reproductive no earlier than that age (Poole et al., 2011; Slotow 

et al., 2000).  

 

 

 

1.3.2 Ecological role and impact on the ecosystem 

 

African elephants are keystone species and ecological engineers of African savanna 

ecosystems (Haynes, 2012; Western, 1989) given their disproportionate effect on 

ecosystem structure and functionalities (Chibeya et al., 2021; Ripple et al., 2015; Kohi et 

al., 2011; Estes et al., 2011). Additionally, elephants play a crucial role in the dispersal of 

seeds across the different habitats within their range (Campos-Arceiz and Blake, 2011). 

Dudley (2000) estimated a dispersal rate of 2054 seeds per square kilometres per day, and 

Campos-Arceiz and Blake (2011) reported an improvement in the germination stage in 

seeds dispersed by elephants. They are also recognised as an umbrella species, which 

means they have a significant impact on other species in the same ecosystem (Gross and 

Heinsohn, 2023). Their movement and foraging activities foster biodiversity at the 

environmental and faunal levels (Thompson et al., 2022; Shaffer et al., 2019). As evidence, 

long-term studies in savanna ecosystems have demonstrated the key role of elephants in 

reshaping landscapes through damage to canopies, saplings, and shrubs (Fritz, 2017; 

Coverdale et al., 2016; Kohi et al., 2011).  

As one of the most influential species in African landscapes (de Beer et al., 2006), 

its impact on vegetation radically alters the plant composition (Guldemond et al., 2017; 

Baxter and Getz, 2008; Baxter and Getz, 2005; Augustine and McNaughton, 2004; 

Eckhardt et al., 2001), however, if not properly balanced in space and time, it can be 

detrimental to the recovery and survival of plant species (Chui, 2021; Jacobs and Biggs, 

2002; Lombard et al., 2001). Notwithstanding, the impact of this alteration on the savanna 

habitat is a debated topic, as the literature reports contrasting outcomes (Howes et al., 

2020). Several studies have highlighted how elephants can effectively induce irreversible 

damage to trees and riparian habitats, where they repeatedly impact over time, thus 

impeding natural regeneration (Cook and Henley, 2019; Teren et al., 2018; Guldemond 
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and Van Aarde, 2007; Dublin, 2003; Owen-Smith, 1988; Mwalyosi, 1987). Furthermore, 

this phenomenon is exacerbated when the number of elephants exceeds the maximum 

carrying capacity of the ecosystem (Thouless et al., 2016; Coverdale et al., 2016; Landman 

and Kerley, 2014; Wittemyer et al., 2013). However, Stevens et al. (2016) suggested that 

the heterogeneousness of savanna ecosystems can counteract the possible negative 

elephants’ impact, which thus becomes a contributor to the preservation of the optimal 

state of the savanna. Similarly, the effect on species richness is still not entirely clear. 

Guldemond et al. (2017) stated that the disturbance of elephants on the landscape can 

generate new niches that can be populated by other species, which in turn leads to an 

increase in biodiversity. Conversely, in Amboseli National Park, two antelope species 

(bushbuck Tragelaphus scriptus and lesser kudu Tragelaphus imberbis) have disappeared 

precisely because of the damage caused by elephants to the ecosystem (Howes et al., 2020; 

Cummings et al., 1997). Likewise, within the same park, other mammal species (giraffe 

Giraffa camelopardalis, gerenuk Litocranius walleri, and baboon Papio ursinus) have 

diminished in total abundance due to elephant-induced habitat changes (Whyte, 2001). 

Nevertheless, a study conducted in 2011 revealed that meso-browser, including impalas, 

showed a preference to feed in areas highly impacted by elephants (Valeix et al., 2011), 

whilst Nasseri et al. (2011) determined an increase in diversity and abundance of 

herpetofauna in habitats with a high degree of elephant disturbance. A systematic review 

of studies on elephant impact concluded that elephants certainly have a significant effect 

on vegetation, but with no evident knock-on effect on the other species with which they 

coexist (Guldemond et al., 2017). 

 

 

1.3.3 Habitat selection, home range, and diet 

 

Elephants are capable of living in a wide variety of environments, given their adaptability 

to large differences in altitude, which allows them to occupy areas from sea level to 

mountain altitudes (c.a. 1200 metres above sea level), as well as their ability to persist in 

multiple habitat types, from desert to tropical forest (Jiang et al., 2020; Laws, 1970). It is 

widely documented that elephant herds expand their range during the wet period of 

summer compared to the winter season, during which they confine themselves to areas 

with high proximity to water sources (Lindeque and Lindeque 1991; Ottichilo 1986; 
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Norton-Griffiths 1975; Jarman 1972; but see also Shannon et al., 2006). However, 

Shannon et al. (2006) pointed out that in an environment of food scarcity during the dry 

season, the elephant herd's habitat selection may increase in size compared to the wet 

season, thus widening their home range to increase the likelihood of food availability. 

When food resources are in abundance, elephants exhibit less accuracy in habitat selection 

(William et al., 2018; Mabille et al., 2012). Given the high availability and variety of food, 

they mix multiple food types to obtain a wide nutritional spectrum rather than mere energy 

intake (Codron et al., 2012). In the opposite scenario - during a period of food scarcity - 

they specifically select a habitat with a secure food provision, preferring quantity over 

quality (Tsalyuk et al., 2019; Young et al., 2009a). Chui (2021) showed that elephants 

select habitats according to seasonal ecological changes and plant production regimes. 

However, habitat selection also depends on the choices of the individual, where personal 

traits such as memory, personality and social behaviour are the main driving factors (Hertel 

et al., 2020; Webber and Vander Wal, 2018; Polansky et al., 2015; Dingemanse et al., 2010; 

Wittemyer et al., 2007). Therefore, individual heterogeneity plays an equally important 

role in habitat selection and use (Chui, 2021). 

Due to their elevated alimentary tolerance (Chui, 2021), elephants are classified as 

mixed feeders, which means they can alternate feeding behaviour between seasons 

depending on which type of food is most abundant (Chibeya et al., 2021). According to 

recent studies, they seem to mainly browse during the dry season and graze during the wet 

season (Kos et al., 2012). Consequently, depending on the season, between 60% and 95% 

of their diet consists of grasses (Archie et al., 2006a). When feeding on trees or shrubs, 

they generally choose species with high nutrient levels (Holdo, 2003), avoiding plants with 

defence strategies such as high presence of tannin polyphenols (Sheil and Salim, 2006). 

Likewise, they tend to choose trees with large canopies in order to maximise the energy 

gain per plant (Howes et al., 2020), debarking the larger branches and toppling the smaller 

ones (Thompson et al., 2022; Ssali et al., 2013; Ihwagi et al., 2012; Boundja and Midgley, 

2010). 

 

 

 

 

 



9 

 

1.3.4 Social hierarchy and reproductive behaviour 

 

The social hierarchy of African elephants is one of the most complex among mammal 

species. Genetic studies have shown that groups of elephants are matrilineally related, 

which means that their social organisation is driven by kinship bonds between female 

elephants (Archie et al., 2006b). Indeed, females represent the core of elephant society, 

maintaining ties with other female individuals throughout their lives (Schulte and LaDue, 

2021; Schuttler et al., 2014; Fishlock and Lee, 2013; Wittemyer and Getz, 2007; Moss and 

Poole, 1983). In the organisation within these groups of females, the older ones play the 

dominant role over the younger ones, establishing a clear hierarchy in the group, creating 

fission-fusion types of society (de Silva and Wittemyer, 2012; Wittemyer and Getz, 2007; 

Archie et al., 2006b; Wittemyer et al., 2005). Each herd has its matriarch, who will fulfil 

her role until her death. However, when competition between adult females occurs, it leads 

to the separation of one of them from the original herd, together with other herd members, 

who will assume the role of matriarch for the new group (Chui, 2021; Wittemyer et al., 

2005). Despite this, the matriarchs still have kinship ties, so they will likely fuse again, 

forming a two-herd bond group (Archie et al., 2006b; Wittemyer et al., 2005). 

Contrastingly, males move away from their native herds around the age of 14 (Lee 

et al., 2011), commencing to migrate between solitary groups of young males only, or with 

non-natal herds of females, alternately (Chui, 2021; Chiyo et al., 2014; Lee et al., 2011). 

Male and female individuals are normally spatially segregated, except for the breeding 

season, when females are in oestrus and males are in 'musth', i.e., a highly reproductive 

period when the aggressiveness level increases considerably (Schulte and LaDue, 2021; 

Rasmussen et al., 1996; Poole, 1987; Poole et al., 1984).  

However, while musth happens on a regular basis, albeit temporally staggered 

among males, females are only in oestrus for a couple of weeks with a gap of 4-5 years 

(Brown, 2014; Moss and Lee, 2011; Freeman et al., 2009). Furthermore, the gestation 

period is approximately 22 months (Chui, 2021). Therefore, the latter, combined with the 

physiological interval between two fertile periods, results in a low reproductive rate (Chui, 

2021). Adult males in musth could represent a social advantage for young males. They 

move, in fact, between different female herds, representing an opportunity for young males 

to separate from their parental groups. The possibility of learning ecological and social 

skills from males in musth (Chiyo et al., 2012; Slotow et al., 2000) may represent one of 
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the main factors in the dispersal of young males from their natal herds (Chui, 2021). Once 

displaced, the young males' associations with adult elephants modify their socio-

behavioural knowledge, a crucial step in the transition to adulthood (Murphy et al., 2020; 

Lee et al., 2011; Evans and Harris, 2008). Despite these interactions, young males are 

likely to bond with other elephants of the same age to engage in activities, such as sparring, 

in order to assess their strength to be ready to establish dominance in their future adulthood 

(Chiyo et al., 2011; Evans and Harris, 2008). 

Therefore, although the social structure of females is stronger, as their hierarchical 

organisation is crucial for their fitness and survival and for the transfer of eco-social 

knowledge across generations, the social organisation of males is also influenced by 

several factors, such as age, kinship, reproductive status and dominant behaviour, which 

are the main drivers of their social bonds (Goldenberg et al., 2014; Chiyo et al., 2011; 

O'Connell-Rodwell et al., 2011). 

 

 

1.3.5 Movement patterns and environmental drivers 

 

African elephants are physiologically predisposed to travel long distances (Birkett et al., 

2012). Their movement patterns are extremely complex in time and space, as well as highly 

influenced by seasons (Young et al., 2009a; Young et al., 2009b; de Beer and van Aarde, 

2008; Leggett, 2006; Cushman et al., 2005; Douglas-Hamilton et al., 2005); therefore, they 

are highly variable depending on the scale applied (Birkett et al., 2012; Owen-Smith, 2002; 

Senft et al., 1987): fine-scale movement patterns may involve periods of one hour, while 

prolonged periods on larger scales may include weekly, monthly, seasonal, annual and 

interannual movement patterns (Fryxell et al., 2008; Senft et al., 1987). When elephant 

populations flourish, it is essential to know their movement behaviour and how they use 

the habitat in the long term in order to pursue appropriate management (Loarie et al., 2009). 

External factors, such as the presence of artificial water sources and fences, can have an 

impact on elephant populations' growth rate and movement behaviour (Loarie et al., 2009). 

Additionally, a diversified environment results in a non-homogeneous allocation of 

resources, including habitats, foraging areas, and water (de Knegt et al., 2007; Apps et al., 

2001).  However, each resource is available to the individual according to its own 

timeframe, which may depend on the seasons, abiotic factors, or the presence/absence of 
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other environmental resources (Birkett et al., 2012).  In African savanna ecosystems, food 

availability is linked to seasonal variations, therefore elephants adapt to these changes by 

modifying their displacement patterns throughout the seasons (Birkett et al., 2012; Fryxell 

et al., 2008). Hence, the presence and distribution of environmental resources influence 

the seasonal ranges of elephants. In turn, these highlight which factors are limiting and 

how demographic variables are affected. Therefore, these dynamics and their drivers are 

crucial to answering the question of how elephant herds can be limited (Shannon et al., 

2006). 

It has been pointed out that the movement patterns of elephants are influenced by 

the type of vegetation, as high-density areas, e.g., clusters of trees, are favoured by these 

pachyderms because of the higher levels of fibre and nutrients they can gain compared to 

savanna grasses (Vogel et al., 2020; Ludwig et al., 2008). However, despite the high dietary 

value of some areas, the energetic costs of travelling, in terms of duration and danger, to 

reach the habitat may reduce its desirability (Vogel et al., 2020). Local ecology and risk 

components may in fact represent additional environmental factors influencing the spatial 

behaviour of elephants (Mramba et al., 2019; Goldenberg et al., 2018; Wittemyer et al., 

2017; Shannon et al., 2010; Shannon et al., 2008). Furthermore, when elephants have to 

choose their route, they are notorious for preferring well-known and well-trodden paths or 

corridors (Songhurst et al., 2016; Von Gerhardt et al., 2014; Jachowski et al., 2013; 

Guerbois et al., 2012; Gerhardt-Weber, 2011). Lastly, water is one of the main 

environmental drivers influencing the movement patterns of elephants, also affecting their 

use of space (de Beer and van Aarde, 2008; Leggett, 2006; Stokke and du Toit, 2002). 

Elephants are reliant on water as they have a great turnover, due to water loss through 

dermal and respiratory evaporation when environmental temperatures are elevated (Purdon 

and Van Aarde, 2017). Moreover, elephants heavily depend on practices associated with 

water use, such as mud bathing, swimming, and splashing to thermoregulate themselves 

(Mole et al., 2016; Dunkin et al., 2013). Thus, it is becoming evident that the combined 

availability of food and water, are key driving factors in elephant movement patterns and 

habitat use; therefore, knowledge of how these factors influence elephant ecology and 

behaviour is critical for conservation (Bohrer et al., 2014). 
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1.3.6 Changes in spatial behaviour within fenced reserves 

 

At the present time, 84% of African elephants are found within Protected Areas (PAs) 

(Gross and Heinsohn, 2023). Particularly, South Africa has been a pioneer in the 

development of fenced reserves aimed at protecting wildlife (e.g., Slotow, 2012; Gusset et 

al., 2008; Grant et al., 2008; Hayward et al., 2007). Elephants were removed from most of 

the South African lands by 1900 (Whyte et al., 1999). When reintroduction programs 

commenced to become successful, large numbers of elephants were relocated within 

private reserves, i.e., closed systems where the presence of fences restricted any kind of 

migration (Slotow et al., 2005). One of the main reasons for creating a fenced reserve is 

the conservation of the species, ensuring an environment protected from external dangers 

(Slotow, 2012). Despite this, PAs have often recorded elevated elephant mortality, due to 

illegal killing within the reserve, such as poaching or subsistence hunting (Chase et al., 

2016; Woodroffe et al., 2014). Nevertheless, an increasing number of fenced reserves are 

experiencing an overpopulation of elephants (Gross and Heinsohn, 2023; Selier et al., 

2018), which greatly affects the maintenance of balanced ecosystems (Gross and 

Heinsohn, 2023). PAs often host other threatened species, therefore the ecosystem 

imbalance created by elephant surplus may have an indirect impact on the survival of these 

species (Wall et al., 2013). However, in unfenced areas, the steady decline of elephants is 

similarly leading to ecological dysfunction of the ecosystem, compromising inter-species 

and environmental dynamics (Gross and Heinsohn, 2023). 

Spatial confinement of elephants within fenced reserves may exaggerate their impact 

on habitat (Thompson et al., 2022; Baxter and Getz, 2005; Hoare, 1999; Laws, 1970). The 

presence of fences can lead to a decrease in seasonal movements and, therefore, a 

concentration of foraging impacts in selected areas (Guldemond and Van Aarde, 2008; 

Lombard et al., 2001; Cummings et al., 1997). Therefore, in fenced reserves the likelihood 

for elephants to repeatedly use the same patches of vegetation increases, due to limited 

dispersal possibilities across the landscape in relation to food supply (Thompson et al., 

2022; Howes et al., 2020; de Boer et al., 2015; Mackey et al., 2006; Slotow et al., 2005). 

Furthermore, the fence line may itself pose a problem, as Loarie et al. (2009) showed how 

it sometimes induced elephants to group against it. Additionally, movement patterns are 

also affected by proximity to fences, with articles showing an increase in habitat use as 

distance from the fences increases (see e.g., Thompson et al., 2022; Vanak et al., 2010).  
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1.4 Hypotheses, Aims and Objectives 

Through the use of hourly GPS fixes, this research aimed to explore the movement patterns 

of two matriarchs within a fenced reserve in South Africa over a 7-month period. Utilising 

Hidden Markov Models (HMMs), the study's objective was to determine the most suitable 

multi-state model for the two matriarchs. This aimed to evaluate their baseline movement 

patterns and variations in behavioural states, both on a monthly scale and over a combined 

period of seven months. Afterward, the study proceeded to assess the influence of four 

distinct extrinsic factors: terrain roughness, distance to the nearest road/path, distance to 

the nearest water source, and NDVI. This evaluation aimed to determine whether these 

factors played a pivotal role in shaping the movement patterns of the two matriarchs and 

to what degree. All four predictor variables were examined independently to assess their 

direct influence on elephant movements. By explicitly testing their influence on a monthly 

and collective scale, the aim of the study was to clarify the extent to which movement 

patterns depend on such covariates, providing a better understanding of the elephants' 

choices and preferences that drove their movement within the reserve. Thus, in turn, this 

research aimed to provide information of critical importance for the successful and 

effective management of the species and, consequently, the entire ecosystem. 
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2 METHOD  

 

2.1 Study location  

Selati Game Reserve (SGR) is located in South Africa, specifically in Limpopo Province, 

north of the Olifants River (23⁰54’S - 24⁰06’S, and 30⁰36’E - 30⁰55’E) (Fig.1). The SGR 

was founded in 1993 when several private landowners joined together 16 properties, with 

the aim of safeguarding and supporting wildlife and plants richness of the site (Siegel, 

2023; Peel and Martindale, 2020). Being surrounded by electrified fences, the SGR is an 

enclosed reserve, covering a total area of 258 km² (Selati Game Reserve, 2017). To the 

northwest of the reserve lies the Gravelotte Emerald Mine. Along the western border is the 

town of Gravelotte, while near the eastern border, the community managed Marakapula 

Reserve is based. This latter reserve serves as a barrier between the SGR and the 

Namakgale rural area, as well as between Abelana and Balule Private Nature Reserve 

(Comley, 2019; Peel and Martindale, 2020). The SGR is bordered by other protected lands 

to the south, specifically Makalali-Pidwa and Karongwe Reserves, while to the north by 

community livestock farms. The entire reserve is located within the Ba-Phalaborwa Local 

Municipality, which is part of Mopani District Municipality of Limpopo Province (Peel 

and Martindale, 2020). At the present time, the reserve is based on low-impact ecotourism 

(Siegel, 2023) and authorised low-impact hunting, which partially supports the reserve at 

the economic level (Peel and Martindale, 2020). 

The SGR is characterised by hot summers and warm-to-cold winters. The reserve 

experiences about 500 mm of precipitation per year (Kottek et al., 2006; Peel and 

Martindale, 2020). Evapotranspiration rates have occasionally exceeded rainfall, causing 

a strong impact on plants (Peel and Martindale, 2020). Precipitation is mainly concentrated 

between October and March, reaching the maximum amount of mm per month between 

December and January (Fig.) (Comley, 2019). 

The scarcity and inconsistency of rainfall are characteristic features of semi-arid 

savanna ecosystems. In this context, only two seasons characterise the area over the course 

of the year: a five-month hot and wet season (November-March) and a cold and dry season 

between May and September, with April and October as transition periods between the two 

seasons (Peel and Martindale, 2020). During the summer, temperatures vary between 18°C 

and 45°C, whereas in the winter, they range from 8°C to 23°C. The average highest 
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monthly temperature typically reaches around 40°C, while the lowest mean minimum 

temperature hovers around 0°C (Peel and Martindale, 2020). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Location map of Selati Game Reserve. Created with QGIS Desktop by Zelia 

Romano. 
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The SGR is at an elevation averaging 530 m above sea level (a.s.l.), reaching 778 m a.s.l 

in the southernmost part of the reserve, with the Ga-Mashishimale Hills. The Selati River 

flows through the reserve from west to northeast, and along with other drainage streams, 

flows as a tributary into the Olifants River, partly creating the Greater Olifants River Basin 

(Peel and Martindale, 2020). 

Within the SGR boundaries, multiple water points are present for wildlife, scattered 

throughout the reserve (Fig.). These include 38 seasonal pans, 22 artificial water sources, 

7 reservoirs and at least 10 boreholes, of which only about half are active. The seasonal 

pans are designed so that rainwater runoff flows into them, however supplementary water 

can come from surrounding boreholes as well. In the section of the Selati River that lies 

within the reserve, six dams were built in the past: currently only three are still intact 

(Comley, 2019; Siegel, 2023). 

The SGR is entirely within the South African Savanna Biome, including three different 

bioregions within its boundaries (Rutherford et al., 2006) (Fig.2): 

i) The Phalaborwa-Timbavati Mopaneveld bioregion, which covers 61% of the 

reserve, fully dominate the central areas of the reserve. It covers an area with a 

wide variation in elevation, ranging from 300 m to 600 a.s.l. It is dominated by 

red bushwillow (Combretum apiculatum), silver cluster-leaf (Terminalia 

sericea) and mopane (Colophospermum mopane) (Rutherford et al., 2006), 

across mopane forests, mixed mopane-bushwillow forests and mixed mopane-

bushwillow-Acacia spp. forests (Peel and Martindale, 2020). The abundance of 

termite mounds scattered throughout the bioregion is another distinctive feature 

of the area (Mucina and Rutherford, 2006).  

ii) The Granite Lowveld bioregion represents only the 33% of the SGR, and it is 

mainly distributed in the northern and southern areas. It extends over a wide 

range of elevations, particularly between 250 and 700 m a.s.l., resulting in 

major changes in soil composition throughout this elevation range. Ancient 

granites and Makhutswi gneiss, which represent the bedrock geology, form 

sandy soils at higher elevations and clay soils in lower areas (Rutherford et al., 

2006). The bioregion is represented by scattered shrubland and low, fairly dense 

forests in the sandy areas, where three main species dominated, namely silver 

cluster-leaf, large-fruited bushwillow (Combretum zeyheri) and red bushwillow 

(Mucina and Rutherford, 2006). In contrast, in dense and open savanna areas, 

knob thorn (Senegalia nigrescens), sicklebush (Dichrostachys cinerea) and 
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brandy bush (Grewia bicolor) dominate (Mucina and Rutherford, 2006). Red 

bushwillow veld, mixed red bushwillow-marula (Sclerocarya birrea) veld, and 

silver cluster-leaf veld are found within this bioregion (Mucina and Rutherford, 

2006). 

iii) The Gravelotte Rocky Bushveld bioregion constitutes only the mountainous 

zones, scattered at west and east of the reserve, with a total cover of about 6%. 

It lies between 450 and 950 m a.sl. and is characterised by open deciduous and 

semi-deciduous woodlands on rocky areas and isolated hill that stands above 

well-developed plains (Mucina and Rutherford, 2006). Indeed, rocky soils 

differentiate this bioregion from the others, generally shallow with rocky 

outcrops and slopes all around the woodlands. The main tree species typical of 

this bioregion are African teak (Pterocarpus angolensis), hook-thorn 

(Senegalia caffra), bushveld candelabra (Euphorbia cooperi) and red 

bushwillow (Comley, 2019).  

 

 

Figure 2. Distribution of the three different bioregions inside SGR (Mucina and 

Rutherford, 2006). 
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2.2 GPS Collar Data collection  

In 2022, two matriarchs, Elza and Jean (Appendix I), were collared with the Long Range 

(LoRa) collar devices in the Selati Game Reserve in June. These types of collars enabled 

GPS positions to be acquired on an hourly basis. Therefore, to study the movements of 

each matriarch, and thus also those of their herds, GPS-fixes were used from the day the 

collar was fitted - which is the 1st of June for Elza, and the 8th of June for Jean - until 31st 

December 2022, the end date for both the matriarchs studied. Throughout the reserve, three 

gateways were installed in order to have total signal reception coverage of the collars 

(Seager, 2023). The LoRa collars are a type of tracking device that use LoRaWAN (Long 

Range Wide Area Network) technology to monitor and collect data about elephant 

movements (Meenakshi et al., 2022). The collar collects data from the GPS receiver and 

sensors installed inside it. This data includes the elephant's coordinates, movement 

patterns, speed, and environmental conditions. The LoRa technology allows the collar to 

transmit the collected data over long distances using low-power, wide-area networks 

(Meenakshi et al., 2022). Subsequently, gateways located within the reserve pick up the 

transmitted data from the collar. Finally, the received data is sent to an Amazon Web 

Service Stack (AWS Stack) and then to ArcGis Online, where it is stored (Seager, 2023). 

The LoRa collars involved in this study have a spatial accuracy of 5 metres and a 

temporal error between 0 and 2 minutes every hour, i.e., a GPS fix is recorded every 60-

62 minutes (Seager, 2023). GPS reception problems resulted in missing position data. 

These were imputed using a customised R function that interpolated values for intervals 

greater than 65 minutes. In the 7-month period analysed in this study, LoRa collars 

recorded 2.18% and 1.67% missing data from Elza and Jean respectively, ensuring 

reasonable completeness (Table 1). 
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Table 1. Missing detections of GPS fixes for each analysed month per matriarch. 

Additionally, the total number of GPS points divided per month and matriarch. 

GPS fixes 

 Elza Jean 

 
Missing 

detections 

Total  

records 

Missing 

detections 

Total  

records 

June 6 711 6 542 

July 5 742 2 743 

August 71 742 63 740 

September 14 720 4 719 

October 7 743 5 743 

November 4 718 3 719 

December 5 742 3 742 

 

 

2.3 Data preparation for covariates and Remote Sensing Data 

The model built to analyse each matriarch movement pattern included four covariates: 

terrain roughness, distance to nearest road/path, distance to nearest water source, and 

NDVI.  

Selati Game Reserve shared essential shapefiles to carry out this project, 

particularly concerning the distribution of all the main and secondary gravel roads (see 

Appendix II), and the location of all water sources within the reserve, both natural and 

artificial (see Appendix II). The water points were then divided into seasonal and perennial, 

so that during the dry season only the active ones were applied. The distance from each 

GPS fix to the nearest water source and road was calculated in R for both matriarchs. 

Terrain roughness and elevation of the entire reserve were calculated using ‘terra’ and 



20 

 

‘elevatr’ packages, respectively (Hijmans et al., 2023; Hollister et al., 2023). Even though 

previous research pointed out that elevation could indirectly influence preferences by 

having an effect on the other covariates (Asner et al., 2016; Berti et al., 2022; Chibeya et 

al., 2021; Ngene et al., 2009; Taher et al., 2021; Talukdar et al., 2020), the elevation 

variable was excluded because the best performing model did not include elevation. 

Instead, terrain roughness was included as a covariate since it was in the best 

approximating model. 

The Normalized Difference Vegetation Index (NDVI) was calculated to be added as 

another covariate in order to assess habitat preferences. The satellite images used to 

calculate the NDVI value were downloaded from Planet (https://www.planet.com/). Their 

spatial resolution is 3 metres per pixel. One image per month was downloaded, choosing 

a date close to the middle of that month and having a cloud cover below 5%. The chosen 

image was used as representative of the entire month to which it referred (details of all 

satellite tiles use are given in Appendix III). The NDVI calculation was performed 

separately for each month on QGIS Desktop (version 3.30.1 “s-Hertogenbosch”), using 

the raster calculator tool. Only the near-infrared (NIR) and red (RED) bands were utilized 

as input for the calculation, following the formula NDVI= NIR−RED/NIR+RED. The 

NDVI value obtained from the satellite image for a particular month was consistently 

applied to every day within that same month (see Appendix II). 

 

 

2.4 Hidden Markov Model (HMM) 

Elephant movement patterns were statistically analysed through a Hidden Markov Model 

(HMM). HMM is a state-space models that outline animal behaviours as a series of states 

delineated by both movement parameters and transition probabilities between states 

(Jonsen et al., 2005; McClintock et al., 2020). In detail, it consists of two dependent parts: 

a set of observations Z1; . . .; ZT and a sequence of unobservable states S1; . . .; ST (Fig.3). 

The latter take on values between {1,. . .,N}, respecting the Markov first-order finite-state 

Markov chain (Langrock et al., 2012). Therefore, at any time t, the execution of 𝑍𝑡 is 

assumed to have been extracted from one of N constituent distributions, determined in turn 

by the value of the state at time t. In this study, the unobservable states are represented by 

the different behavioural states (Michelot et al., 2016). 
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The HMM was adapted to this study using the R package moveHMM, which 

applies HMMs and associated tools for modelling animal movement (see Michelot et al., 

2023). The package was employed to pre-process the data for analysis, to fit HMM to the 

data and to diagnose fitted models (Michelot et al., 2023). 

 

Figure 3. Structure of dependency in Hidden Markov Model (Michelot et al., 2016). 

 

 

2.5 Data processing and fitting HMM 

The HMM procedure for modelling animal movements concerns a bivariate time series 

with 𝑧𝑡 = (𝑙𝑡, 𝜙𝑡), where 𝑙𝑡 is the step length, i.e., the Euclidean distance between two 

subsequent GPS fixes (𝑥𝑡, 𝑦𝑡) and (𝑥𝑡+1, 𝑦𝑡+1), and , 𝜙𝑡 is the turning angle, i.e. the change 

in direction in the intervals [t −1,t] and [t, t + 1] of the analysed animal (Fig.4) (Patterson 

et al., 2017). Therefore, for being able to fit an HMM using moveHMM, the series of step 

lengths (meters) and turning angles (radians) were calculated through the prepData 

function from the GPS fixes. 

 

 

 

Figure 4. Graphic overview of step lengths and turning angles calculation (Michelot et al., 

2023). 
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Step lengths were modelled with a Gamma (Γ) distribution, dependent on two 

initial parameters: the step mean (mu μ) and the step standard deviation (sigma σ). Turning 

angles were modelled with a Von Mises (VM) distribution, dependent on two initial 

parameters: the angle-mean and the concentration of the distribution around the mean 

(kappa k). At a given time, these parameters are governed by the unobserved state 

corresponding to that fix (Michelot et al., 2023).  

The number of states (i.e., behavioural categories) must be entered, along with their 

state transition probabilities. Likewise, the initial parameters exemplifying the state-

dependent distributions, must be stated. As Michelot et al. (2016) stressed, these choices 

are fundamental as the starting values influence the algorithm governing the function for 

the maximum likelihood estimation (MLE). Furthermore, the choice can influence the 

outputs of the HMM, since a different estimate of the starting parameters depends on the 

number of states chosen, thus a change in the parameters can lead to different fitted 

estimations (Berti et al., 2023). Therefore, if the starting parameters and the number of 

states are inadequately selected, this affects the fitting of the HMM.  

To overcome these possible biases, several trials were conducted in order to find 

the most suitable number of behavioural states for this study. In particular, a two-state 

model and a three-state model were adapted as a trial. Both the graphical outputs and the 

analysis through the Akaike Information Criterion (AIC) confirmed a better fit of the three-

state model for the specific case of this research. In addition, this is in line with the findings 

of Taylor et al. (2020), who found that the three-state model was the best fit when analysing 

elephant movements. Once the number of behavioural states was defined, a function was 

created to generate random initial parameter values for each state of the HMM's step model 

(mu and sigma) and angle model (angleMean and kappa). These values were generated 

within specified ranges, following the methodology explained by Berti et al. (2023). 

Specifically, the initial parameters were ranged between the 10%-90% quantiles of the 

movement values obtained from the GPS fixes; since the chosen model was three-state, 

this interval of quantiles’ was split into three sub-intervals, one for each state, as follows: 

U(q10%, q40%), U(q40%, q70%), U(q70%, q90%), respectively (Berti et al., 2023). The 

function was set on 100 iterations for which the HMM were fitted with different initial 

parameter values for each state. Subsequently, the model with the lowest negative log-

likelihood was chosen as the best-fitted three-state HMM model, thus its parameters were 

used for all the matriarchs. 
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Once the starting parameters were set, the model calculated the regression 

coefficients for the transition probabilities. These coefficients returned an estimate of the 

probability of transition from one state to the other, based on the values of the predictor 

variables (Michelot et al., 2023). Additionally, the stationary state probabilities were also 

performed by the model. They comprised the long-term probabilities of occurring in each 

state at different values of the covariate (Michelot et al., 2023).   

Pseudo-residuals - also called quantile residuals - were applied to assess the 

correctness and accuracy of the chosen fitted HMM. If the model has analysed the data 

correctly, the pseudo-residuals must have an approximately normal distribution. Therefore, 

a deviation from a standard normal distribution suggests a lack of fit of the HMM 

(Michelot et al., 2023; Michelot et al., 2016). The sequence of behavioural states of the 

unobserved Markov chain was also decoded to analyse more in deep the state-switching 

process, using the Viterbi algorithm. The latter provides the most probable succession of 

states that generated the observation (Michelot et al., 2023; Michelot et al., 2016). 

Therefore, the Viterbi function was applied to estimate the percentage of time spent in each 

state. Additionally, the state probabilities, i.e., the probability of occurrence of each state 

in the model for each GPS time point, given the fitted model, were calculated with a 

function already present in the moveHMM package. For an HMM with N states and a 

series of GPS fixes recorded following a succession in time of length T, the function used 

generates a matrix T x N, where in each row is given the probability that the Markov chain 

was in each of the N states at the time of row T (Michelot et al., 2023). The state with the 

greatest likelihood found with the latter function may not correspond with the state in the 

most likely sequence calculated by the Viterbi algorithm. The reason lies in the different 

type of execution between the two functions, which can be described as ‘local decoding’ 

and ‘global decoding’, respectively (Michelot et al., 2023). 

The modelling was created to analyse the matriarchs’ movement patterns with the 

influence of four covariates on a monthly scale. In addition, matriarchs’ movement patterns 

were also evaluated by combining all months together, in order to gain an overall 

understanding. The maximum period analysed for a single elephant was seven months (1st 

of June to 31st of December), of which five months (June to October) were classified as 

the 'dry season' and the last two (November and December) as the 'wet season', based on 

the weather conditions of that year, combined with empirical evidence recorded by the 

reserve managers. Based on the AIC evaluation, the best HMMs model identified three 

distinct states in all individuals. These states can be classified into broad categories of 
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behaviour: state 1, represented by the short steps, was mainly characterised by slower 

movements without a specific direction; state 3, represented by the long steps, was the 

fastest state with a specific direction traced throughout; finally, state 2, represented by the 

medium steps, had characteristics intermediate between the other two states, i.e., a 

cadenced speed of movement with both non-directed and directed directions.  

During the analysis of Jean's movement patterns, two months, July and November, 

were notably absent. This absence stemmed from a recurring error in the initial parameters, 

preventing the extraction of any meaningful results from the GPS data for these particular 

months. Nevertheless, both July and November were factored into the analysis of all 

months combined, contributing to the overall assessment. 

For maps of monthly movement patterns, see Appendix IV. 
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3 RESULTS  

 

A total of 10,066 GPS fixes (n) were analysed to study the movement patterns of two 

matriarchs, Elza (n = 5,118) and Jean (n = 4,948), within the Selati Game Reserve, between 

June and December 2022. 

 

 

3.1 Elza 

The step length means for each state fluctuated in a month-scale analysis: state 1 had a 

minimum of 55 metres c.a. (in June) and a maximum of 102 metres c.a. (in October); state 

2 ranged from a minimum of 157 metres c.a. (in October) and a maximum of 369 metres 

c.a. (in December); state 3 exhibited a minimum of 754 metres c.a. (in September) and a 

maximum of 1129 metres c.a. (in December). Overall, on a 7-month period, the step length 

means were 61.5, 272, and 994 meters, for states 1,2, and 3 respectively. Fluctuations were 

also recorded for the standard deviation (SD) of the step length, as well as for the mean 

and concentration of the turning angle (see Table 2 and 3). 
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Table 2. Step length parameters showing the mean (expressed in km) and standard 

deviation (SD) for each month and for all the months combined (last row). The step length 

mean corresponds to the average distance covered in a single step for each state. 

Step length parameters 

 Mean SD 

 State 1 State 2 State 3 State 1 State 2 State 3 

June 0.055 0.310 1.077 0.055 0.221 0.543 

July 0.066 0.270 0.953 0.064 0.160 0.533 

August 0.074 0.222 0.857 0.071 0.104 0.579 

September 0.063 0.182 0.754 0.063 0.127 0.511 

October 0.102 0.157 1.001 0.125 0.131 0.710 

November 0.066 0.305 0.983 0.061 0.182 0.404 

December 0.079 0.369 1.129 0.077 0.201 0.430 

June-

December 
0.061 0.272 0.994 0.058 0.166 0.556 
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Table 3. The turning angle parameters, showing the mean and the concentration for each 

month and for all the months combined (last row). The turning angle mean corresponds to 

the average angle performed in a single step for each state. 

Turning angle parameters 

 Mean Concentration 

 State 1 State 2 State 3 State 1 State 2 State 3 

June 0.300 0.012 -0.147 0.541  1.165 2.279 

July -0.029  0.070 -0.030 0.627  1.619 1.551 

August 0.205 0.027 0.052 0.721 1.872 1.737 

September 0.501  -0.028 0.044 0.267  2.212 1.867 

October -2.692  0.095 0.054 0.889  1.416 2.101 

November -0.030   -0.027   0.076 0.239   1.123   2.051 

December 0.414   -0.097 -0.024 0.663  1.231 2.157 

June-

December 
0.178   0.021 -0.015 0.484  1.407 1.824 

 

 

A clear difference was found in the time spent in state 3 (long step) between the dry and 

wet seasons, with an average for all dry months of around 35% of the total time spent 

walking long distances, in contrast to only 14.5% during the wet months (Table 4). In 

particular, in November, the first month after the dry season, there is a peak in the 

percentage of time spent in state 1 (short step), with a value of 41% (Table 4). 
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Table 4. Percentage of time spent for each state obtained with the Viterbi algorithm, 

included in the Viterbi function of the moveHMM package. It provides the most probable 

sequence of states that generated the observation, based on the fitted model. 

 Percentage of time spent on each state 

 State 1 State 2 State 3 

June 0.319  0.462 0.217 

July 0.364  0.426 0.215 

August 0.318  0.384 0.402 

September 0.267  0.361 0.390 

October 0.131  0.588 0.289 

November 0.413  0.476 0.116 

December 0.312  0.508 0.185 

June-

December 
0.319  0.462 0.217 

 

 

In June (Table 5, Fig. 5-8), when all covariates are set to zero, the baseline probability of 

transitioning from state 1 to state 2 (1→2) was +0.71. Under the influence of the NDVI 

variable, this probability became -3.09, indicating that an increase in the value of this 

predictor variable was associated with a decrease in the odds of the event occurring. 

Conversely, the baseline probability of moving from state 1 to state 3 (1→3) and from state 

2 to state 1 (2→1) exhibited considerable negative values (-15.50 and -5.15, respectively). 

In contrast, when the influence of distance to the water source was considered, the 1→3 

probability suggested a positive relationship between the predictor and the outcome 

(+1.26). This indicated that as the distance from a water source increased, the 1→3 

switching probability increased as well. Similarly, when considering the influence of 

NDVI, the probability of 2→1 transitioning was positively affected, with a value of +6.49. 

This implied that in greener areas, there was a greater probability of transitioning to state 
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1. Fig. 5-8 also showed the probability of persistence in a state due to the influence of each 

covariate: for example, the rougher the terrain, the more likely Elza was to persist in state 

1 (Fig.5); just as the lower the roughness value, the higher the probability of persistence in 

state 3 (Fig.5); furthermore, the higher the NDVI value, the lower the probability of 

persistence in states 2 and 3 (Fig.8). 

 

 

Table 5. Regression coefficients for the transition probabilities referred to the month of 

June. The table shows the probability of transition between state 1 and 2 (1→2), state 1 

and 3 (1→3), state 2 and 1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 

and 2 (3→2). The first row indicates the baseline probability of transition when all the 

covariates are set to zero. From the second to the fifth row, 4 different covariates and their 

influence on the transition probabilities are shown. 

Regression coefficients for the transition probabilities              June                    

 1→2 1→3 2→1 2→3 3→1 3→2 

Intercept 0.711 -15.504 -5.159 -0.706 -12.022 -2.608 

Terrain 

roughness 
-0.375 1.1585 0.241 0.371 0.413 0.824 

Min. road/path 

distance 
0.072 -1.311 0.162 0.146 0.902 0.554 

Min. water 

source distance 
0.188 1.264 0.009 0.212 0.029 -0.116 

NDVI -3.090 -8.245 6.497 -2.212 -5.608 3.705 
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Figure 5. Graph showing transition probabilities under the influence of terrain roughness 

as a covariate in June, between state 1 and 2 (1→2), state 1 and 3 (1→3), state 2 and 1 

(2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 (3→2). The graph also 

shows persistence probabilities in state 1 (1→1), state 2 (2→2) and in state 3 (3→3). 

 

 

 

 

Figure 6. Graph showing transition probabilities under the influence of distance to nearest 

road/path as a covariate in June, between state 1 and 2 (1→2), state 1 and 3 (1→3), state 2 

and 1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 (3→2). The graph 

also shows persistence probabilities in state 1 (1→1), state 2 (2→2) and in state 3 (3→3). 
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Figure 7. Graph showing transition probabilities under the influence of distance to nearest 

water source as a covariate in June, between state 1 and 2 (1→2), state 1 and 3 (1→3), 

state 2 and 1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 (3→2). 

The graph also shows persistence probabilities in state 1 (1→1), state 2 (2→2) and in state 

3 (3→3). 

 

 

 

 

Figure 8. Graph showing transition probabilities under the influence of NDVI as a 

covariate in June, between state 1 and 2 (1→2), state 1 and 3 (1→3), state 2 and 1 (2→1), 

state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 (3→2). The graph also shows 

persistence probabilities in state 1 (1→1), state 2 (2→2) and in state 3 (3→3). 
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In July (Table 6, Fig. 9-12), Elza presented a tendency to move into state 1 as the terrain 

was rougher (3→1 = +0.93), into state 2 as the distance to the nearest road/path increased 

(3→2 = +0.80), and into state 3 as the furthest from water sources (1→3 = +0.21 and 2→3 

= +0.29). Under the influence of the NDVI, the 2→1 transition showed a slightly negative 

value (-0.89); however, a substantially positive value was recorded for the 3→1 switching 

probability (+9.68), which meant that a large NDVI value promoted the transition. A high 

probability of persistence in state 3 was indicated at the shortest distance from the road/path 

(Fig. 10). 

 

Table 6. Regression coefficients for the transition probabilities referred to the month of 

July. The table shows the probability of transition between state 1 and 2 (1→2), state 1 and 

3 (1→3), state 2 and 1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 

(3→2). The first row indicates the baseline probability of transition when all the covariates 

are set to zero. From the second to the fifth row, 4 different covariates and their influence 

on the transition probabilities are shown. 

Regression coefficients for the transition probabilities              July 

 1→2 1→3 2→1 2→3 3→1 3→2 

Intercept 0.193 -12.159 -0.920 -0.548 -13.793 -0.570 

Terrain 

roughness 
-0.416 -1.215 -0.038 -0.064 0.931 0.999 

Min. road/path 

distance 
-0.135 -0.577 -0.048 -0.517 -1.975 0.805 

Min. water 

source distance 
-0.077 0.213 -0.160 0.298 -3.568 0.083 

NDVI -2.946 -5.539 -0.893 -1.904 9.684 -0.258 
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Figure 9. Graph showing transition probabilities under the influence of terrain roughness 

as a covariate in July, between state 1 and 2 (1→2), state 1 and 3 (1→3), state 2 and 1 

(2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 (3→2). The graph also 

shows persistence probabilities in state 1 (1→1), state 2 (2→2) and in state 3 (3→3). 

 

 

 

 

Figure 10. Graph showing transition probabilities under the influence of distance to 

nearest road/path as a covariate in July, between state 1 and 2 (1→2), state 1 and 3 (1→3), 

state 2 and 1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 (3→2). 

The graph also shows persistence probabilities in state 1 (1→1), state 2 (2→2) and in state 

3 (3→3). 
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Figure 11. Graph showing transition probabilities under the influence of distance to nearest 

water source as a covariate in July, between state 1 and 2 (1→2), state 1 and 3 (1→3), state 

2 and 1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 (3→2). The 

graph also shows persistence probabilities in state 1 (1→1), state 2 (2→2) and in state 3 

(3→3). 

 

 

 

 

Figure 12. Graph showing transition probabilities under the influence of NDVI as a 

covariate in July, between state 1 and 2 (1→2), state 1 and 3 (1→3), state 2 and 1 (2→1), 

state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 (3→2). The graph also shows 

persistence probabilities in state 1 (1→1), state 2 (2→2) and in state 3 (3→3). 
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In August (Table 7, Fig. 13-16), when the road predictive variable was set, Elza recorded 

both positive and negative values, although all very close to zero. In contrast, during the 

same month, strongly positive values were observed for 2→1 and 3→2 transition 

probabilities (+11.94 and +20.03, respectively) as the NDVI value increased (Table 7). 

Additionally, when it was far from the road, Elza was less likely to persist in state 2 

(Fig.14); furthermore, it stayed in state 1 when it was closer to the water (Fig.15). Under 

the influence of the NDVI variable, Elza was likely to be found in state 3 at a low NDVI 

value (Fig.16). 

 

Table 7. Regression coefficients for the transition probabilities referred to the month of 

August. The table shows the probability of transition between state 1 and 2 (1→2), state 1 

and 3 (1→3), state 2 and 1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 

and 2 (3→2). The first row indicates the baseline probability of transition when all the 

covariates are set to zero. From the second to the fifth row, 4 different covariates and their 

influence on the transition probabilities are shown. 

Regression coefficients for the transition probabilities          August 

 1→2 1→3 2→1 2→3 3→1 3→2 

Intercept -0.638 -3.041 -5.672 -0.306 -5.344 -9.230 

Terrain 

roughness 
-0.284 -0.203 -0.254 0.347 0.271 -0.045 

Min. road/path 

distance 
-0.198 -0.189 -0.141 0.366 0.106 0.160 

Min. water 

source distance 
0.114 0.404 -0.206 0.015 0.613 -1.868 

NDVI -2.904 3.072 11.948 -4.643 8.069 20.032 
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Figure 13. Graph showing transition probabilities under the influence of terrain roughness 

as a covariate in August, between state 1 and 2 (1→2), state 1 and 3 (1→3), state 2 and 1 

(2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 (3→2). The graph also 

shows persistence probabilities in state 1 (1→1), state 2 (2→2) and in state 3 (3→3). 

 

 

 

 

Figure 14. Graph showing transition probabilities under the influence of distance to 

nearest road/path as a covariate in August, between state 1 and 2 (1→2), state 1 and 3 

(1→3), state 2 and 1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 

(3→2). The graph also shows persistence probabilities in state 1 (1→1), state 2 (2→2) and 

in state 3 (3→3). 
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Figure 15. Graph showing transition probabilities under the influence of distance to 

nearest water source as a covariate in August, between state 1 and 2 (1→2), state 1 and 3 

(1→3), state 2 and 1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 

(3→2). The graph also shows persistence probabilities in state 1 (1→1), state 2 (2→2) and 

in state 3 (3→3). 

 

 

 

 

Figure 16. Graph showing transition probabilities under the influence of NDVI as a 

covariate in August, between state 1 and 2 (1→2), state 1 and 3 (1→3), state 2 and 1 (2→1), 

state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 (3→2). The graph also shows 

persistence probabilities in state 1 (1→1), state 2 (2→2) and in state 3 (3→3). 
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September (Table 8, Fig.13-16) showed extremely high values of 2→1 (+31.50) under the 

influence of the NDVI (Fig.16). In support of the latter result, Elza persisted in state 2 

when at the lowest NDVI values (Fig.16). Regarding the distance from the road, the 3→1 

transition was significantly inhibited (-6.00) as the distance from the nearest road increased 

(Table 8). As evidence, persistence in state 1 was more likely to occur as close to the road 

as possible (Fig.14). When setting the terrain roughness as a covariate, the 3→1 transition 

was promoted as the roughness increased (+1.73). Persistence in state 2 was more likely 

to occur near water sources. 

 

 

Table 8. Regression coefficients for the transition probabilities referred to the month of 

September. The table shows the probability of transition between state 1 and 2 (1→2), state 

1 and 3 (1→3), state 2 and 1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 

and 2 (3→2). The first row indicates the baseline probability of transition when all the 

covariates are set to zero. From the second to the fifth row, 4 different covariates and their 

influence on the transition probabilities are shown. 

Regression coefficients for the transition probabilities      September 

 1→2 1→3 2→1 2→3 3→1 3→2 

Intercept 17.761 2.451 -11.419 -2.966 -24.425 -4.667 

Terrain 

roughness 
-0.250 0.053 0.076 0.133 1.736 -0.272 

Min. road/path 

distance 
-2.294 0.129 -0.486 0.052 -6.008 -0.117 

Min. water 

source distance 
0.196 0.125 0.535 0.635 0.318 -0.158 

NDVI -63.557 -9.996 31.507 2.559 -6.257 10.131 
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Figure 17. Graph showing transition probabilities under the influence of terrain roughness 

as a covariate in September, between state 1 and 2 (1→2), state 1 and 3 (1→3), state 2 and 

1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 (3→2). The graph 

also shows persistence probabilities in state 1 (1→1), state 2 (2→2) and in state 3 (3→3). 

 

 

 

 

Figure 18. Graph showing transition probabilities under the influence of distance to 

nearest road/path as a covariate in September, between state 1 and 2 (1→2), state 1 and 3 

(1→3), state 2 and 1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 

(3→2). The graph also shows persistence probabilities in state 1 (1→1), state 2 (2→2) and 

in state 3 (3→3). 
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Figure 19. Graph showing transition probabilities under the influence of distance to 

nearest water source as a covariate in September, between state 1 and 2 (1→2), state 1 and 

3 (1→3), state 2 and 1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 

(3→2). The graph also shows persistence probabilities in state 1 (1→1), state 2 (2→2) and 

in state 3 (3→3). 

 

 

 

 

Figure 20. Graph showing transition probabilities under the influence of NDVI as a 

covariate in September, between state 1 and 2 (1→2), state 1 and 3 (1→3), state 2 and 1 

(2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 (3→2). The graph also 

shows persistence probabilities in state 1 (1→1), state 2 (2→2) and in state 3 (3→3). 
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In October (Table 9, Fig.21-24), when NDVI or distance from the road were set as 

covariates (Fig.22,24), Elza was more likely to be in state 1 (+33.56) as the former 

increased and the latter at a minimum value. Contrastingly, this month recorded an opposite 

trend in transition probabilities when terrain roughness was set as a covariate, showing a 

high probability of persisting in state 1 at the lowest value of roughness (Table 9, Fig.21). 

Regarding the predictor variable of distance to the nearest water source, the 1→2 switching 

probability was more probable to occur near the water (Fig.23). 

 

 

Table 9. Regression coefficients for the transition probabilities referred to the month of 

October. The table shows the probability of transition between state 1 and 2 (1→2), state 

1 and 3 (1→3), state 2 and 1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 

and 2 (3→2). The first row indicates the baseline probability of transition when all the 

covariates are set to zero. From the second to the fifth row, 4 different covariates and their 

influence on the transition probabilities are shown. 

Regression coefficients for the transition probabilities         October 

 1→2 1→3 2→1 2→3 3→1 3→2 

Intercept 0.195 12.604 -3.924 -3.712 -12.971 -9.022 

Terrain 

roughness 
3.458 -1.751 0.359 -0.350 0.286 -0.159 

Min. road/path 

distance 
-0.636 2.494 -1.537 -0.363 -0.051 -0.313 

Min. water 

source distance 
-4.016 -0.166 -0.962 0.127 -0.330 -0.239 

NDVI -13.550 -45.985 0.534 4.238 33.561 23.391 
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Figure 21. Graph showing transition probabilities under the influence of terrain roughness 

as a covariate in October, between state 1 and 2 (1→2), state 1 and 3 (1→3), state 2 and 1 

(2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 (3→2). The graph also 

shows persistence probabilities in state 1 (1→1), state 2 (2→2) and in state 3 (3→3). 

 

 

 

 

Figure 22. Graph showing transition probabilities under the influence of distance to 

nearest road/path as a covariate in October, between state 1 and 2 (1→2), state 1 and 3 

(1→3), state 2 and 1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 

(3→2). The graph also shows persistence probabilities in state 1 (1→1), state 2 (2→2) and 

in state 3 (3→3). 
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Figure 23. Graph showing transition probabilities under the influence of distance to 

nearest water source as a covariate in October, between state 1 and 2 (1→2), state 1 and 3 

(1→3), state 2 and 1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 

(3→2). The graph also shows persistence probabilities in state 1 (1→1), state 2 (2→2) and 

in state 3 (3→3). 

 

 

 

 

Figure 24. Graph showing transition probabilities under the influence of NDVI as a 

covariate in October, between state 1 and 2 (1→2), state 1 and 3 (1→3), state 2 and 1 

(2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 (3→2). The graph also 

shows persistence probabilities in state 1 (1→1), state 2 (2→2) and in state 3 (3→3). 
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Between November and December, the only two months belonging to the wet season, the 

results of the transition probabilities followed almost the same patterns for both (Table 10-

11, Fig.25-32): a high probability of remaining in state 2 as the terrain was rougher (Fig.25-

26); an elevated likelihood of persisting in states 1 and 2 near water and switch into state 

3 when the distance from it increased (Fig.29-30); a higher probability of staying in state 

3 at a lower NDVI value, moving to state 2, and then to state 1, as the greenness increased 

(Fig.31-32); and a discrete likelihood of remaining in state 2 when distant from road 

(Fig.27-28). 

 

 

Table 10. Regression coefficients for the transition probabilities referred to the month of 

November. The table shows the probability of transition between state 1 and 2 (1→2), state 

1 and 3 (1→3), state 2 and 1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 

and 2 (3→2). The first row indicates the baseline probability of transition when all the 

covariates are set to zero. From the second to the fifth row, 4 different covariates and their 

influence on the transition probabilities are shown. 

Regression coefficients for the transition probabilities      November 

 1→2 1→3 2→1 2→3 3→1 3→2 

Intercept -1.722 -37.559 -8.057 -2.799 -27.154 -4.848 

Terrain 

roughness 
-0.172 -1.745 -0.118 -1.512 -10.641 -0.110 

Min. road/path 

distance 
0.125 3.618 -0.125 0.202 0.625 0.339 

Min. water 

source distance 
-0.082 -0.650 -0.090 0.399 -7.341 -0.694 

NDVI 0.562 -20.944 11.299 0.904 -9.960 8.594 
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Table 11. Regression coefficients for the transition probabilities referred to the month of 

December. The table shows the probability of transition between state 1 and 2 (1→2), state 

1 and 3 (1→3), state 2 and 1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 

and 2 (3→2). The first row indicates the baseline probability of transition when all the 

covariates are set to zero. From the second to the fifth row, 4 different covariates and their 

influence on the transition probabilities are shown. 

Regression coefficients for the transition probabilities       December 

 1→2 1→3 2→1 2→3 3→1 3→2 

Intercept 2.388 14.848 -1.833 -2.405 -481.931 -2.087 

Terrain 

roughness 
0.375 -797.052 0.071 -0.317 -40.518 0.301 

Min. road/path 

distance 
-0.165 -122.262 -0.082 0.039 10.639 0.009 

Min. water 

source distance 
0.011 -241.173 0.142 0.753 -40.660 -0.117 

NDVI -5.153 -2211.85 0.859 0.572 -291.208 2.015 
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Figure 25. Graph showing transition probabilities under the influence of terrain roughness 

as a covariate in November, between state 1 and 2 (1→2), state 1 and 3 (1→3), state 2 and 

1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 (3→2). The graph 

also shows persistence probabilities in state 1 (1→1), state 2 (2→2) and in state 3 (3→3). 

 

 

 

 

Figure 26. Graph showing transition probabilities under the influence of terrain roughness 

as a covariate in December, between state 1 and 2 (1→2), state 1 and 3 (1→3), state 2 and 

1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 (3→2). The graph 

also shows persistence probabilities in state 1 (1→1), state 2 (2→2) and in state 3 (3→3). 
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Figure 27. Graph showing transition probabilities under the influence of distance to 

nearest road/path as a covariate in November, between state 1 and 2 (1→2), state 1 and 3 

(1→3), state 2 and 1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 

(3→2). The graph also shows persistence probabilities in state 1 (1→1), state 2 (2→2) and 

in state 3 (3→3). 

 

 

 

Figure 28. Graph showing transition probabilities under the influence of distance to 

nearest road/path as a covariate in December, between state 1 and 2 (1→2), state 1 and 3 

(1→3), state 2 and 1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 

(3→2). The graph also shows persistence probabilities in state 1 (1→1), state 2 (2→2) and 

in state 3 (3→3). 
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Figure 29. Graph showing transition probabilities under the influence of distance to 

nearest water source as a covariate in November, between state 1 and 2 (1→2), state 1 and 

3 (1→3), state 2 and 1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 

(3→2). The graph also shows persistence probabilities in state 1 (1→1), state 2 (2→2) and 

in state 3 (3→3). 

 

 

 

Figure 30. Graph showing transition probabilities under the influence of distance to 

nearest water source as a covariate in December, between state 1 and 2 (1→2), state 1 and 

3 (1→3), state 2 and 1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 

(3→2). The graph also shows persistence probabilities in state 1 (1→1), state 2 (2→2) and 

in state 3 (3→3). 
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Figure 31. Graph showing transition probabilities under the influence of NDVI as a 

covariate in November, between state 1 and 2 (1→2), state 1 and 3 (1→3), state 2 and 1 

(2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 (3→2). The graph also 

shows persistence probabilities in state 1 (1→1), state 2 (2→2) and in state 3 (3→3). 

 

 

 

 

Figure 32. Graph showing transition probabilities under the influence of NDVI as a 

covariate in December, between state 1 and 2 (1→2), state 1 and 3 (1→3), state 2 and 1 

(2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 (3→2). The graph also 

shows persistence probabilities in state 1 (1→1), state 2 (2→2) and in state 3 (3→3). 
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The transition probabilities of all 7 months combined followed the general trends shown 

month by month (Table 12, Fig.33-36): for example, the terrain roughness influenced the 

switching probabilities by promoting a transition to state 1 (2→1= +0.12) and a persistence 

in that state as the roughness increased (Fig.33); or considering distance to the nearest 

water source, as the distance increased, the probability of persistence in state 2 diminished 

and the probability of 2→3 transition increased (+0.40) (Fig.35). 

 

 

 

Table 12. Regression coefficients for the transition probabilities referred to the month from 

June to December combined as a whole. The table shows the probability of transition 

between state 1 and 2 (1→2), state 1 and 3 (1→3), state 2 and 1 (2→1), state 2 and 3 

(2→3), state 3 and 1 (3→1), and state 3 and 2 (3→2). The first row indicates the baseline 

probability of transition when all the covariates are set to zero. From the second to the fifth 

row, 4 different covariates and their influence on the transition probabilities are shown. 

Regression coefficients for the transition probabilities     June-to-December 

 1→2 1→3 2→1 2→3 3→1 3→2 

Intercept -1.334 -0.382 -1.612 -2.453 -5.588 -1.324 

Terrain 

roughness 
-0.150 -0.184 0.128 -0.080 -2.649 0.159 

Min. road/path 

distance 
0.028 0.132 -0.147 -0.093 0.494 -0.152 

Min. water 

source distance 
0.090 -0.320 0.098 0.404 0.486 -0.139 

NDVI 0.243 -5.746 0.475 1.335 0.455 0.814 
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Figure 33. Graph showing transition probabilities under the influence of terrain roughness 

as a covariate for the 7-month period (June to December), between state 1 and 2 (1→2), 

state 1 and 3 (1→3), state 2 and 1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and 

state 3 and 2 (3→2). The graph also shows persistence probabilities in state 1 (1→1), state 

2 (2→2) and in state 3 (3→3). 

 

 

 

 

Figure 34. Graph showing transition probabilities under the influence of distance to 

nearest road/path as a covariate for the 7-month period (June to December), between state 

1 and 2 (1→2), state 1 and 3 (1→3), state 2 and 1 (2→1), state 2 and 3 (2→3), state 3 and 

1 (3→1), and state 3 and 2 (3→2). The graph also shows persistence probabilities in state 

1 (1→1), state 2 (2→2) and in state 3 (3→3). 
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Figure 35. Graph showing transition probabilities under the influence of distance to 

nearest water source as a covariate for the 7-month period (June to December), between 

state 1 and 2 (1→2), state 1 and 3 (1→3), state 2 and 1 (2→1), state 2 and 3 (2→3), state 

3 and 1 (3→1), and state 3 and 2 (3→2). The graph also shows persistence probabilities in 

state 1 (1→1), state 2 (2→2) and in state 3 (3→3). 

 

 

 

 

Figure 36. Graph showing transition probabilities under the influence of NDVI as a 

covariate for the 7-month period (June to December), between state 1 and 2 (1→2), state 

1 and 3 (1→3), state 2 and 1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 

and 2 (3→2). The graph also shows persistence probabilities in state 1 (1→1), state 2 

(2→2) and in state 3 (3→3). 
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The results regarding the stationary state probabilities were analysed covariate by covariate 

(Fig.37-44).  

Considering the terrain roughness as covariate, across June, July, and August there 

was a clear prevalence of occurrence in state 1 at high roughness values (Fig.37-39). In 

September, the probability of being in state 3 increased with increasing the covariate value, 

while both state 1 and 2 had a low probability of occurrence at high roughness levels 

(Fig.40). In October, there was a marked predominance of state 2 at each value of terrain 

roughness (Fig.41). November and December, instead, registered the same probability of 

occurrence for the former, and higher odds of being in state 2 for the latter (Fig.42-43). 

Analysing the 7-month period as a whole, however, showed a strong prevalence of state 1 

when the terrain was rougher (Fig.44). 

When the distance to the nearest road/path was applied as a variable, in June there 

was a tendency to remain in state 2 regardless of the distance to the road, while there was 

a greater likelihood of persisting in state 3 when on the road (Fig.37). In July, a higher 

probability of being in states 2 and 1 was observed as distance increased, whereas state 3 

was more likely at the shortest distance (Fig.38). In August and September, there was a net 

prevalence of state 3 among the different values of the covariate (Fig.39-40), whereas 

October showed a predominance of state 1 in the extreme proximity of the road, and of 

state 2 as the value of the covariate augmented (Fig.41). November and December showed 

similar patterns, with a preponderance of state 2 across the entire spectrum of covariate 

values (Fig.42-43). Overall, state 2 was the favourite under the influence of this covariate, 

with state 1 slightly more likely near the road (Fig.44). 

Under the influence of distance from the nearest water source as a predictor 

variable, state 2 prevailed in June and July, regardless of the distance from the water 

(Fig.37-38). In August, September, and October, instead, state 2 was the most probable 

near the water source (with a substantial peak in October), while state 3 increased 

exponentially as distance from the water increased (Fig.39-41). A similar trend emerged 

between November and December, with state 1 following the same trend as state 2 with 

higher occurrence near the water point, but also with a greater likelihood of moving to state 

3 once away from the water (Fig.42-43). The same trends as the latter were followed in the 

7-month analysis (Fig.44). 

With slightly different degrees of probability, when setting NDVI as a covariate, 

each month indicated a high persistence in state 1 at the highest values of the NDVI, and 



54 

 

a high probability of remaining in state 3 at the lowest values of the covariate, with the 

highest probability of being in state 2 at the mean values of NDVI (Fig.37-44). 

 

 

Figure 37. Graph showing stationary state probabilities for each covariate in June. 

 

 

Figure 38. Graph showing stationary state probabilities for each covariate in July. 
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Figure 39. Graph showing stationary state probabilities for each covariate in August. 

 

 

 

 

 

Figure 40. Graph showing stationary state probabilities for each covariate in September. 
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Figure 41. Graph showing stationary state probabilities for each covariate in October. 

 

 

 

 

 

Figure 42. Graph showing stationary state probabilities for each covariate in November. 
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Figure 43. Graph showing stationary state probabilities for each covariate in December. 

 

 

 

 

Figure 44. Graph showing stationary state probabilities for each covariate combining all 

the months. 
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3.2 Jean 

The step length means for each state varied monthly over the 7 months analysed (Table 

13). State 1 recorded a minimum of 68 metres in June and a maximum of 129 metres in 

December; state 2, presented a minimum and a maximum of 333 metres (in August) and 

664 metres (in December), respectively; state 3 ranged between 842 metres (in December) 

as a minimum, and 1769 metres (in October) as a maximum. Taking the 7 months together, 

the step length mean is 50, 223, and 887 metres for states 1,2, and 3, respectively. The SD 

results followed the same fluctuation patterns as the mean. For greater accuracy of the 

model, the turning angle parameters, which include the mean and concentration, were also 

calculated (Table 14). 

 

 

Table 13. Step length parameters showing the mean (expressed in km) and standard 

deviation (SD) for each month and for all the months combined (last row). The step length 

mean corresponds to the average distance covered in a single step for each state. 

Step length parameters 

 Mean SD 

 State 1 State 2 State 3 State 1 State 2 State 3 

June 0.068 0.370 1.476 0.075 0.262 0.701 

July - - - - - - 

August 0.084 0.333 1.288 0.080 0.183 0.677 

September 0.090 0.349 1.225 0.092 0.213 0.555 

October 0.100 0.565 1.769 0.108 0.377 0.698 

November - - - - - - 

December 0.129 0.664 0.842 0.148 0.488 0.633 

June-

December 
0.050 0.223 0.887 0.056 0.146 0.580 
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Table 14. The turning angle parameters, showing the mean and the concentration for each 

month and for all the months combined (last row). The turning angle mean corresponds to 

the average angle performed in a single step for each state. 

Turning angle parameters 

 Mean Concentration 

 State 1 State 2 State 3 State 1 State 2 State 3 

June 0.042 -0.103 0.030 0.576 1.461 1.500 

July - - - - - - 

August 0.045 0.062 0.029 0.969 1.664 1.431 

September -0.108 0.133 -0.074 0.807 1.414 2.413 

October -0.070 0.042 -0.176 0.748 1.675 5.452 

November - - - - - - 

December -0.324 -0.013 -0.048 0.374 1.213 7.032 

June-

December 
-0.243 0.045 -0.007 0.265 1.585 1.508 

 

 

 

Between June and October, the percentage of time spent in state 1 increasingly rose, 

reaching 51% occurrence in October, which also recorded the lowest percentage of time 

spent in state 3 (6%). In an analysis on a monthly scale, Jean recorded a high presence in 

state 2, with percentages ranging from 39% to 61%. Particularly, the wet season was 

characterised by elevated values of time spent in state 1 and 2. Considering collectively 

the months from June to December, Jean spent 42% of the time in state 2, 37% in state 3 

and 20% in state 1 (Table 15). 
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Table 15. Percentage of time spent for each state obtained with the Viterbi algorithm, 

included in the Viterbi function of the moveHMM package. It provides the most probable 

sequence of states that generated the observation, based on the fitted model. 

 Percentage of time spent on each state 

 State 1 State 2 State 3 

June 0.274 0.613 0.123 

July - - - 

August 0.381 0.502 0.209 

September 0.462 0.391 0.151 

October 0.510 0.426 0.069 

November - - - 

December 0.354 0.502 0.147 

June-

December 
0.201 0.428 0.369 

 

 

In June (Table 16, Fig.45-48), the baseline probability of 1→2 transitioning was +1.23. 

When setting the terrain roughness as a predictor variable, the 1→2 value became slightly 

negative (-0.22), whereas when considering 2→1 transition, the probability was +0.22, 

indicating a tendency to remain in state 1 as roughness increased. As evidence, the 

probability of persistence in state 1 was higher when the terrain was rougher (Fig.45). 

Under the influence of NDVI as a covariate, a great negative transition probability was 

recorded for the 2→3 transition (-5.29), whilst 3→1 switching probability registered a 

value of +10.68. As proof, the persistence odds in state 1 increased with increasing NDVI 

value and, and concurrently, switching probabilities of 1→2 decreased (Fig.48). 

Considering the influence of the distance to the nearest water source, the 3→2 probability 

was greater near the water, whereas 3→1 probability was greater away from water points. 
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The regression coefficients for the 1→3 transition were not taken into account for the 

analysis of this month's movements, as there was no correspondence in the graphs. 

 

 

 

Table 16. Regression coefficients for the transition probabilities referred to the month of 

June. The table shows the probability of transition between state 1 and 2 (1→2), state 1 

and 3 (1→3), state 2 and 1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 

and 2 (3→2). The first row indicates the baseline probability of transition when all the 

covariates are set to zero. From the second to the fifth row, 4 different covariates and their 

influence on the transition probabilities are shown. 

Regression coefficients for the transition probabilities             June 

 1→2 1→3 2→1 2→3 3→1 3→2 

Intercept 1.238 -577.939 -4.768 0.426 -10.112 -2.011 

Terrain 

roughness 
-0.222 82.068 0.222 0.285 -2.465 1.526 

Min. road/path 

distance 
0.146 143.762 0.445 -0.059 -0.935 -0.151 

Min. water 

source distance 
0.142 -462.273 -0.582 -0.100 2.481 -1.762 

NDVI -3.632 -399.035 5.063 -5.292 10.618 1.354 
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Figure 45. Graph showing transition probabilities under the influence of terrain roughness 

as a covariate in June, between state 1 and 2 (1→2), state 1 and 3 (1→3), state 2 and 1 

(2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 (3→2). The graph also 

shows persistence probabilities in state 1 (1→1), state 2 (2→2) and in state 3 (3→3). 

 

 

 

 

Figure 46. Graph showing transition probabilities under the influence of distance to 

nearest road/path as a covariate in June, between state 1 and 2 (1→2), state 1 and 3 (1→3), 

state 2 and 1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 (3→2). 

The graph also shows persistence probabilities in state 1 (1→1), state 2 (2→2) and in state 

3 (3→3). 
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Figure 47. Graph showing transition probabilities under the influence of distance to 

nearest water source as a covariate in June, between state 1 and 2 (1→2), state 1 and 3 

(1→3), state 2 and 1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 

(3→2). The graph also shows persistence probabilities in state 1 (1→1), state 2 (2→2) and 

in state 3 (3→3). 

 

 

 

 

 

Figure 48. Graph showing transition probabilities under the influence of NDVI as a 

covariate in June, between state 1 and 2 (1→2), state 1 and 3 (1→3), state 2 and 1 (2→1), 

state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 (3→2). The graph also shows 

persistence probabilities in state 1 (1→1), state 2 (2→2) and in state 3 (3→3). 
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In August (Table 17, Fig.49-52), the NDVI had a great influence on transition probabilities, 

with a tendency to promote occurrence in state 1 as the covariate value increased (2→1 = 

+10.98). In support of this, as the NDVI value augmented, persistence in state 2 decreased 

remarkably, while persistence in state 1 increased (Fig.52). The distance to nearest 

road/path did not notably influence the transition probability, recording slightly positive 

value of 2→1 and 2→3 transition values as the distance augmented (+0.12 and +0.35 

respectively), along with a persistence probability in state 2 that decreased as the distance 

to the road increased (Fig.50). Terrain roughness in this month presented a probability of 

2→1 switching when the terrain was rougher, followed by a decreasing value of 

persistence in state 2 when the roughness was greater (Fig.49). 

 

Table 17. Regression coefficients for the transition probabilities referred to the month of 

August. The table shows the probability of transition between state 1 and 2 (1→2), state 1 

and 3 (1→3), state 2 and 1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 

and 2 (3→2). The first row indicates the baseline probability of transition when all the 

covariates are set to zero. From the second to the fifth row, 4 different covariates and their 

influence on the transition probabilities are shown. 

Regression coefficients for the transition probabilities          August 

 1→2 1→3 2→1 2→3 3→1 3→2 

Intercept 0.463 -332.935 -4.733 -5.846 -821.089 -2.169 

Terrain 

roughness 
-0.235 -32.848 0.552 0.152 68.825 0.084 

Min. road/path 

distance 
0.110 38.576 0.121 0.355 -477.328 -0.133 

Min. water 

source distance 
-0.027 6.275 -0.303 -0.087 -124.250 0.041 

NDVI -4.395 -103.113 10.983 13.098 463.953 4.159 
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Figure 49. Graph showing transition probabilities under the influence of terrain roughness 

as a covariate in August, between state 1 and 2 (1→2), state 1 and 3 (1→3), state 2 and 1 

(2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 (3→2). The graph also 

shows persistence probabilities in state 1 (1→1), state 2 (2→2) and in state 3 (3→3). 

 

 

 

 

Figure 50. Graph showing transition probabilities under the influence of distance to 

nearest road/path as a covariate in August, between state 1 and 2 (1→2), state 1 and 3 

(1→3), state 2 and 1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 

(3→2). The graph also shows persistence probabilities in state 1 (1→1), state 2 (2→2) and 

in state 3 (3→3). 
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Figure 51. Graph showing transition probabilities under the influence of distance to 

nearest water source as a covariate in August, between state 1 and 2 (1→2), state 1 and 3 

(1→3), state 2 and 1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 

(3→2). The graph also shows persistence probabilities in state 1 (1→1), state 2 (2→2) and 

in state 3 (3→3). 

 

 

 

 

Figure 52. Graph showing transition probabilities under the influence of NDVI as a 

covariate in August, between state 1 and 2 (1→2), state 1 and 3 (1→3), state 2 and 1 (2→1), 

state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 (3→2). The graph also shows 

persistence probabilities in state 1 (1→1), state 2 (2→2) and in state 3 (3→3). 
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In September (Table 18, Fig.53-56), when the distance to the nearest road/path was set, 

persistence in state 3 was higher the further away from the road (Fig.54), as well as 3→2 

probability of occurrence was higher near the road and lower with the distance (-1.11). 

Therefore, the increase in distance from the road inhibited the likelihood of moving from 

state 3 to state 2. Regarding the influence of distance to the nearest water source, the 

probability of persisting in state 2 was higher near the water (Fig.55), while the 2→1 

increased with distance (+0.59). Considering the NDVI as a covariate, the probability of 

persisting in state 3 was null at the highest NDVI value (Fig.56). Furthermore, 3→1 and 

2→1 probabilities were promoted as the NDVI values increased (+66.24 and +3.08, 

respectively). 

 

Table 18. Regression coefficients for the transition probabilities referred to the month of 

September. The table shows the probability of transition between state 1 and 2 (1→2), state 

1 and 3 (1→3), state 2 and 1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 

and 2 (3→2). The first row indicates the baseline probability of transition when all the 

covariates are set to zero. From the second to the fifth row, 4 different covariates and their 

influence on the transition probabilities are shown. 

Regression coefficients for the transition probabilities       September 

 1→2 1→3 2→1 2→3 3→1 3→2 

Intercept -1.466 -1452.85 -2.071 1.077 -26.902 -3.054 

Terrain 

roughness 
-0.032 -694.761 0.275 0.152 0.236 -0.470 

Min. road/path 

distance 
-0.350 282.184 -0.269 0.152 -1.398 -1.119 

Min. water 

source distance 
0.086 437.579 0.595 0.528 1.396 -0.028 

NDVI 0.383 -1047.92 3.087 -7.719 66.247 8.161 
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Figure 53. Graph showing transition probabilities under the influence of terrain roughness 

as a covariate in September, between state 1 and 2 (1→2), state 1 and 3 (1→3), state 2 and 

1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 (3→2). The graph 

also shows persistence probabilities in state 1 (1→1), state 2 (2→2) and in state 3 (3→3). 

 

 

 

 

Figure 54. Graph showing transition probabilities under the influence of distance to 

nearest road/path as a covariate in September, between state 1 and 2 (1→2), state 1 and 3 

(1→3), state 2 and 1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 

(3→2). The graph also shows persistence probabilities in state 1 (1→1), state 2 (2→2) and 

in state 3 (3→3). 
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Figure 55. Graph showing transition probabilities under the influence of distance to 

nearest water source as a covariate in September, between state 1 and 2 (1→2), state 1 and 

3 (1→3), state 2 and 1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 

(3→2). The graph also shows persistence probabilities in state 1 (1→1), state 2 (2→2) and 

in state 3 (3→3). 

 

 

 

 

Figure 56. Graph showing transition probabilities under the influence of NDVI as a 

covariate in September, between state 1 and 2 (1→2), state 1 and 3 (1→3), state 2 and 1 

(2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 (3→2). The graph also 

shows persistence probabilities in state 1 (1→1), state 2 (2→2) and in state 3 (3→3). 
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In October (Table 19, Fig.57-60) when setting the distance to the nearest road/path as a 

covariate, a persistence in state 1 was greater near the road, increasingly becoming prone 

to zero as moving away from the road (Fig.58). In support of this, when distance increased, 

the 1→2 probability was promoted (+0.39) and the 2→1 transition probability was 

inhibited (-0.22). When considering the influence of the distance to the water source, there 

was a tendency to transition to state 3 (1→3= 0.91, 2→3= 0.56) as the distance from the 

water increased, which was also confirmed by the probability of persisting in state 3, which 

was higher the further away from the water (Fig.59). Under the influence of the NDVI, the 

probabilities to move from state 3 to state 2 and then to state 1 were the greatest (3→2 = 

+65.08 and 2→1= +15.70) (Fig.60). Persistence in state 1 was higher as the terrain was 

rougher (Fig.57). 

 

Table 19. Regression coefficients for the transition probabilities referred to the month of 

October. The table shows the probability of transition between state 1 and 2 (1→2), state 

1 and 3 (1→3), state 2 and 1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 

and 2 (3→2). The first row indicates the baseline probability of transition when all the 

covariates are set to zero. From the second to the fifth row, 4 different covariates and their 

influence on the transition probabilities are shown. 

Regression coefficients for the transition probabilities         October 

 1→2 1→3 2→1 2→3 3→1 3→2 

Intercept 0.134 -9.979 -6.438 1.188 -0.212 -19.627 

Terrain 

roughness 
-0.476 0.372 0.306 -0.522 -0.626 0.043 

Min. road/path 

distance 
0.392 -4.882 -0.222 -0.055 0.108 -0.369 

Min. water 

source distance 
0.023 0.918 0.124 0.566 0.047 -1.110 

NDVI -4.771 3.236 15.707 -11.945 -3.544 65.083 
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Figure 57. Graph showing transition probabilities under the influence of terrain roughness 

as a covariate in October, between state 1 and 2 (1→2), state 1 and 3 (1→3), state 2 and 1 

(2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 (3→2). The graph also 

shows persistence probabilities in state 1 (1→1), state 2 (2→2) and in state 3 (3→3). 

 

 

 

 

Figure 58. Graph showing transition probabilities under the influence of distance to 

nearest road/path as a covariate in October, between state 1 and 2 (1→2), state 1 and 3 

(1→3), state 2 and 1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 

(3→2). The graph also shows persistence probabilities in state 1 (1→1), state 2 (2→2) and 

in state 3 (3→3). 
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Figure 59. Graph showing transition probabilities under the influence of distance to 

nearest water source as a covariate in October, between state 1 and 2 (1→2), state 1 and 3 

(1→3), state 2 and 1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 

(3→2). The graph also shows persistence probabilities in state 1 (1→1), state 2 (2→2) and 

in state 3 (3→3). 

 

 

 

 

Figure 60. Graph showing transition probabilities under the influence of NDVI as a 

covariate in October, between state 1 and 2 (1→2), state 1 and 3 (1→3), state 2 and 1 

(2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 (3→2). The graph also 

shows persistence probabilities in state 1 (1→1), state 2 (2→2) and in state 3 (3→3). 
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December (Table 20, Fig.61-64) recorded a high probability of persistence in state 2 in the 

vicinity of the water source (Fig.63), while as the distance increased, the 2→3 transition 

probability also increased (+1.23). Under the influence of NDVI as a covariate, an 

increasingly higher probability of switching to state 1 was showed when the NDVI value 

was higher (2→1= +28.02) (Fig.64). When considering distance to road, the probability of 

persisting in state 3 was more elevated when the distance increased, with a maximum peak 

at the greatest distance (Fig.62). Persistence in state 1 was higher as the rougher was the 

terrain. 

 

 

Table 20. Regression coefficients for the transition probabilities referred to the month of 

December. The table shows the probability of transition between state 1 and 2 (1→2), state 

1 and 3 (1→3), state 2 and 1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 

and 2 (3→2). The first row indicates the baseline probability of transition when all the 

covariates are set to zero. From the second to the fifth row, 4 different covariates and their 

influence on the transition probabilities are shown. 

Regression coefficients for the transition probabilities      December 

 1→2 1→3 2→1 2→3 3→1 3→2 

Intercept -3.446 -29.723 -22.761 0.471 1.213 -41.165 

Terrain 

roughness 
-0.438 3.503 -2.136 0.342 -0.086 -0.400 

Min. road/path 

distance 
-0.091 4.780 -0.397 -4.129 -0.927 -8.763 

Min. water 

source distance 
0.278 0.831 0.060 1.238 0.108 2.140 

NDVI 3.446 -16.286 28.029 -6.504 -2.399 54.843 



74 

 

 

Figure 61. Graph showing transition probabilities under the influence of terrain roughness 

as a covariate in December, between state 1 and 2 (1→2), state 1 and 3 (1→3), state 2 and 

1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 (3→2). The graph 

also shows persistence probabilities in state 1 (1→1), state 2 (2→2) and in state 3 (3→3). 

 

 

 

 

Figure 62. Graph showing transition probabilities under the influence of distance to 

nearest road/path as a covariate in December, between state 1 and 2 (1→2), state 1 and 3 

(1→3), state 2 and 1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 

(3→2). The graph also shows persistence probabilities in state 1 (1→1), state 2 (2→2) and 

in state 3 (3→3). 
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Figure 63. Graph showing transition probabilities under the influence of distance to 

nearest water source as a covariate in December, between state 1 and 2 (1→2), state 1 and 

3 (1→3), state 2 and 1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 

(3→2). The graph also shows persistence probabilities in state 1 (1→1), state 2 (2→2) and 

in state 3 (3→3). 

 

 

 

 

Figure 64. Graph showing transition probabilities under the influence of NDVI as a 

covariate in December, between state 1 and 2 (1→2), state 1 and 3 (1→3), state 2 and 1 

(2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 and 2 (3→2). The graph also 

shows persistence probabilities in state 1 (1→1), state 2 (2→2) and in state 3 (3→3). 
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The overall analysis of transition probabilities considering all 7 months as a whole showed 

trends that mirrored the analysis on a monthly scale (Table 21, Fig.65-68): terrain 

roughness as a covariate influenced the transition probability by favouring the transition 

to state 1 the rougher the terrain was (3→2= +0.10, 2→1= +0.18, and 1→2= -0.20) 

(Fig.65); considering the distance to the nearest road/path as a predictor variable, the 

transition probabilities were in favour of moving to state 3 the further away from the road 

(1→2=+0.10 and 2→3=+0.24) and persisting in such state at the greatest distance from the 

road (Fig.66); when distance from the water source was considered, a prevalence of 

occurrence in state 2 was recorded (Fig.67); when the NDVI was set as a covariate, state 1 

was the most probable as the NDVI value increased (2→1= +1.47 and 3→1=+2.69) 

(Fig.68). 

 

Table 21. Regression coefficients for the transition probabilities referred to the month from 

June to December combined as a whole. The table shows the probability of transition 

between state 1 and 2 (1→2), state 1 and 3 (1→3), state 2 and 1 (2→1), state 2 and 3 

(2→3), state 3 and 1 (3→1), and state 3 and 2 (3→2). The first row indicates the baseline 

probability of transition when all the covariates are set to zero. From the second to the fifth 

row, 4 different covariates and their influence on the transition probabilities are shown. 

Regression coefficients for the transition probabilities       June-to-December 

 1→2 1→3 2→1 2→3 3→1 3→2 

Intercept 0.255 -2.420 -1.978 -2.566 -5.136 -1.608 

Terrain 

roughness 
-0.020 -0.575 0.180 0.036 -1.084 0.103 

Min. road/path 

distance 
0.103 0.032 0.079 0.241 -0.234 -0.151 

Min. water 

source distance 
-0.109 -0.071 0.050 0.266 0.367 -0.061 

NDVI -2.235 1.530 1.477 1.914 2.692 0.325 
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Figure 65. Graph showing transition probabilities under the influence of terrain roughness 

as a covariate for the 7-month period (June to December), between state 1 and 2 (1→2), 

state 1 and 3 (1→3), state 2 and 1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and 

state 3 and 2 (3→2). The graph also shows persistence probabilities in state 1 (1→1), state 

2 (2→2) and in state 3 (3→3). 

 

 

 

 

Figure 66. Graph showing transition probabilities under the influence of distance to 

nearest road/path as a covariate for the 7-month period (June to December), between state 

1 and 2 (1→2), state 1 and 3 (1→3), state 2 and 1 (2→1), state 2 and 3 (2→3), state 3 and 

1 (3→1), and state 3 and 2 (3→2). The graph also shows persistence probabilities in state 

1 (1→1), state 2 (2→2) and in state 3 (3→3). 
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Figure 67. Graph showing transition probabilities under the influence of distance to 

nearest water source as a covariate for the 7-month period (June to December), between 

state 1 and 2 (1→2), state 1 and 3 (1→3), state 2 and 1 (2→1), state 2 and 3 (2→3), state 

3 and 1 (3→1), and state 3 and 2 (3→2). The graph also shows persistence probabilities in 

state 1 (1→1), state 2 (2→2) and in state 3 (3→3). 

 

 

 

 

Figure 68. Graph showing transition probabilities under the influence of NDVI as a 

covariate for the 7-month period (June to December), between state 1 and 2 (1→2), state 

1 and 3 (1→3), state 2 and 1 (2→1), state 2 and 3 (2→3), state 3 and 1 (3→1), and state 3 

and 2 (3→2). The graph also shows persistence probabilities in state 1 (1→1), state 2 

(2→2) and in state 3 (3→3). 
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The results regarding the stationary state probabilities were analysed covariate by covariate 

(Fig.69-74). 

Considering the terrain roughness as a covariate, the stationary state probabilities 

reflected the same results across all the months analysed (Fig.69-73), with a higher 

probability of lying in state 1 as the roughness value increased and lying in state 2 at the 

lowest roughness value. This trend was also confirmed by the 7-month period analysis 

(Fig.74). 

When setting the distance to the nearest road/path, the result differed between 

months. While June showed a stationary state probability of being in state 1 and 2 at the 

greatest distance from the road (Fig.69), August indicated a higher probability of staying 

in state 3 (Fig.70). In September, it was recorded an extremely high prevalence of state 3 

as distance from the road augmented (Fig.71), while state 2 prevailed in October under the 

same conditions (Fig.72). The latter was also found in December (Fig.73), with a 

remarkably elevated probability. However, combining all months together, the occurrence 

in state 3 was the highest as distance from the road increased (Fig.74). 

Under the influence of distance to the nearest water source as a predictor variable, 

in June at the nearest distance there was a higher probability of lying in state 1, whereas, 

at the maximum distance, state 2 was prevalent (Fig.69), as in August (Fig.70). September 

and October showed similar trends (Fig.71-72), with higher probabilities of lying in state 

2 near water and state 1 far from water. December recorded a remarkably high value of 

being in state 2 in the proximity of water (Fig.73). However, although with very similar 

values between states, state 3 was the most likely when away from water (Fig.74). 

The influence of the NDVI as a covariate was consistent across all the months. 

Even if with different grades of probability, lying in state 1 was the most probable at the 

highest values of NDVI throughout the analysed months (Fig.69-74). 
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Figure 69. Graph showing stationary state probabilities for each covariate in June. 

 

 

 

 

 

Figure 70. Graph showing stationary state probabilities for each covariate in August. 



81 

 

 

Figure 71. Graph showing stationary state probabilities for each covariate in September. 

 

 

 

 

 

Figure 72. Graph showing stationary state probabilities for each covariate in October. 
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Figure 73. Graph showing stationary state probabilities for each covariate in December. 

 

 

 

 

 

Figure 74. Graph showing stationary state probabilities for each covariate combining all 

the months. 
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4 DISCUSSION 

 

Although elephant movements are complex and season-dependent (Young et al., 2009a; 

Young et al., 2009b; de Beer and van Aarde, 2008; Leggett, 2006; Cushman et al., 2005; 

Douglas-Hamilton et al., 2005), this study succeeded in delineating the movement patterns 

of two matriarchs within the SGR, a fenced reserve in South Africa. Furthermore, it 

demonstrated how external variables -namely in this study terrain roughness, distance to 

nearest road/path, distance to nearest water source, and NDVI- exerted a significant 

influence on movement patterns, as well as on the prediction of movements. Indeed, 

consistent results were found for each predictor variable throughout the analysed period, 

on a monthly scale and between different individuals. 

From the analysis of the seven months combined, the step length mean for each 

state of the two matriarchs was consistent between the two individuals. Additionally, 

consistency was also found with a previous study, which analysed 155 elephants over 21 

years (Berti et al., 2023). This concordance with the latter indicated a great accuracy of the 

model used to study matriarchs’ movements, denoting how well the chosen parameters fit 

the data. Nonetheless, on a monthly scale, the second matriarch, Jean, showed a longer 

average step length of 30.5%, 76% and 37% in states 1, 2 and 3, respectively, compared to 

the step length mean of the first matriarch, Elza. A valid hypothesis to explain this 

difference, which was particularly pronounced only in certain months, could be the 

presence of more calves in Elza's herd than in Jean's during the evaluated period. This 

theory could explain why Elza's pace was found to be slower than Jean's. It was verified 

that during the aerial census of September 2022, four calves under one year old were found 

in different herds. However, it could not be determined whether one of these herds was 

Elza's. Nonetheless, studying the influence of calves on herd’s pace, Taylor et al. (2022) 

concluded that adult elephants may not need to adapt their speed because of the presence 

of calves. However, it should be noted that this research was the first on this topic, thus 

further analyses may be necessary to confirm or refute these results. Evaluating overall 

rather than on a monthly scale, the difference between the average step length of the two 

matriarchs has narrowed considerably; therefore, it is conceivable that as the months 

passed, the calves grew up and influenced the rhythm of the herds less. 
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A prevalence of time spent in state 1 was found, especially for Elza, during the wet 

months included in this study (i.e., November and December). The analysis revealed that 

Jean commenced to increase its time spent in state 1 from October onwards. This slight 

discrepancy between the two individuals can be explained by the fact that October is 

generally classified as a transition month between the two seasons, it is therefore plausible 

that different matriarchs change their movement behaviour with a gap of few weeks. In 

contrast, during the months belonging to the dry season analysed in this study (i.e., from 

June to September-October), both individuals spent more time mainly in states 2 and 3, 

with a peak in August. This may reflect the need to move more within the reserve when 

resource availability decreased, in order to reach areas with still available forage sources. 

On the contrary, with the transition to the wet season, they exhibited an important shift to 

short steps. This shift likely occurred because the flourishing of food availability, after 

months of scarcity, led them to dedicate more time foraging and feeding than before. These 

results are in contrast to some previous papers (Vogel et al., 2020; Birkett et al., 2012; 

Loarie et al., 2009), which found a lower movement velocity during the dry season and an 

increase in speed during the wet season. However, it is essential to note that the matriarchs' 

movements analysed in this study were constrained by fences. In contrast, the previously 

mentioned studies encompassed open systems of vast extent, such as KNP (Birkett et al., 

2012), the Okavango Delta (Vogel et al., 2020), and transboundary areas spanning different 

countries (Loarie et al., 2009). Therefore, the seemingly contrasting results must be 

contextualised within the difference in available space for elephants. In light of this, the 

findings may be plausible and consistent with the extent of the fenced reserve considered, 

in which these matriarchs have lived for several years, and of which they have developed 

a great knowledge of where each resource is available and at what time of year. As the dry 

season reached its peak, there was an observable increase in the time spent in states 2 and 

3 by the matriarchs. Their movements during this period appeared to be direct and precise, 

suggesting their intent to reach specific areas of the reserve. These areas were likely chosen 

based on their past experiences with the presence of foraging resources during that time of 

year. Furthermore, the main constraint that justified the results of the cited articles was the 

low availability of water during the dry season in such open systems, which forced the 

elephants to a smaller home range than during the wet season (Vogel et al., 2020; Birkett 

et al., 2012; Loarie et al., 2009). This major limitation may have been overcome within the 

SGR due to the large number of artificial water points operating throughout the dry season. 

Therefore, not having such constraint in a relatively small closed system, conceivably 
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matriarchs decided to move more during the dry season in order to exploit areas with more 

availability of food supply. Likewise, having limited possibilities for large migrations, they 

probably decided to settle for longer periods in highly productive areas during the wet 

season. 

 

4.1 Terrain roughness 

In previous studies on elephant movements, changes in elevation or energy landscapes 

were included as a covariate for large areas (Berti et al., 2023; Evans et al., 2020; 

Songhrust et al., 2016; Bohrer et al., 2014). Williams et al. (2018) also included terrain 

roughness as a covariate to assess the correlation with movement pattern, within a 40,000 

km² corridor area in south-eastern Kenya. However, they stated that no major influence of 

terrain roughness on elephant movement was found, whereas elevation played a key role 

in elephant movement. Notwithstanding, within the SGR, a fenced reserve of 258 km², 

relatively small compared with the areas considered in such studies, the elevation seemed 

to not play a notable role, due to the geographical and topographical characteristics of the 

reserve itself. The latter, instead, comprises a great diversity in terrain roughness, due to 

mixed soil composition, and topography. Therefore, it seemed more logical to include it as 

covariate, since hills, valleys, drainages, changes in soil composition, slope, and 

ruggedness may have been important drivers on movement patterns. Therefore, Elza and 

Jean movements were analysed under the influence of the terrain roughness as a predictor 

variable. At the lowest values of roughness, Elza showed a higher probability of being in 

state 2, whereas Jean an equal probability of occurring in state 2 or 3. At the highest values 

of roughness, both Elza and Jean showed a higher probability of occurrence in state 1, 

generally. While Jean showed the exact same results across each month, Elza, instead, 

exhibited a weaker influence of such covariate on its movements as closer to the wet 

period. Overall, a strong occurrence in state 1 as the terrain became rougher was found in 

both matriarchs when combining the seven months together. These results indicated that 

when Elza's and Jean's herds had to travel long distances (i.e., they persisted in state 3), 

they preferred flatter areas to facilitate their movements. Furthermore, they switched to 

state 1 whenever they crossed areas with high roughness values because rough terrain can 

present obstacles that the elephants must circumvent. Steep slopes or drainages, for 

example, may limit their speed and movement in certain directions, forcing them to slow 

down and, hence, to switch to state 1. In particular, seasonal drainages can be classified as 
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rough terrain not only when they are full, but also when they are empty, as they often 

present irregular and rough terrain characteristics. These features may include rocky 

surfaces, debris, uneven terrain and even small cliffs or embankments. These terrain 

variations can make the elephants' movement more challenging. Hence, this phenomenon 

may elucidate why, when matriarchs selected a path necessitating the crossing of one of 

these soil types, they displayed a tendency to transition to state 1 upon approaching that 

particular soil type. Consequently, they remained in that state for as long as the soil 

roughness value remained elevated. 

 

 

4.2 Distance to nearest road/path 

The influence of distance to the nearest road/path was estimated using the road/path 

network of the reserve as a covariate. Previous research has estimated the most likely route 

of elephants based on their movements (Duffy et al., 2011; Cushman and Huettmann 2010; 

Shannon et al., 2009). In contrast, this study aimed to assess the influence of the existing 

road/path network within the reserve, which is also regularly used by rangers' and 

ecotourism guides' vehicles. In particular, the aim was to assess whether elephants used 

such paths as corridors or game path, and in what way. The findings regarding the influence 

of this predictor variable were consistent between the two matriarchs Elza and Jean. 

Combining the results of the transition probabilities and stationary state probabilities, it is 

worth noting that both matriarchs exhibited a limited influence of the nearest road or path 

on a particular state between June and August. In general, during this period, they displayed 

a stronger tendency to persist in states 1 and 2 when located farther away from the road. 

However, when in proximity to the closest road, they displayed a preference for 

transitioning to state 2-3. On the contrary, between September and December, persistence 

in state 2-3 was consistently found further away from the road, whereas at the nearest 

distance from it, occurrence in state 1 was the most likely. The period between June and 

August corresponded to the driest months of that year, when the vegetation was rapidly 

drying up. Thus, the results may explain the matriarchs' need to move more rapidly within 

the reserve in order to reach areas where food was still available as soon as possible. 

Consequently, the persistence of medium-to-long steps when on roads/paths may represent 

their use of these roads as corridors. This explanation is consistent with the study 

conducted by Vogel et al. (2020), which discovered that elephants use corridors when they 
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want to move quickly and directionally trough vegetation and the environment. 

Additionally, the study conducted by Tsalyuk et al. (2019) discovered that when elephants 

needed to traverse the landscape, they exhibited a preference for utilizing roads, as these 

pathways enabled them to lower their energy consumption. 

The period of the year between September and December was characterised by the 

end of the dry season, a slow transition to the wet season and the first part of the wet season 

proper. In the light of this, the results outlined in these months may represent the likelihood 

of a greater exploitation of roadside and pathway vegetation, which was easier to access 

due to its proximity to roads. This interpretation is in agreement with what has been 

empirically observed by reserve managers in recent years, who have noticed a greater 

impact of elephants on vegetation on both sides of the reserve's road network. Moreover, 

this tendency to more easily and frequently impact vegetation on the edges of paths is also 

well documented in the literature (Russo et al., 2023; Blanché, 2021; Brodie et al., 2015; 

Porensky et al., 2013; Fernando and Leimgruber, 2011; Vanak et al., 2010; Young et al., 

1995). In addition, Berger (2007), and Trombulak and Frissell (2000) pointed out that 

elephants may prefer roads during the wet season due to the greater availability of greener 

vegetation on the sides of the paths, as a result of the increased exposure to sunlight. 

Therefore, the fact that roads and paths provided easier travel routes for elephants may 

have led to an increased utilization of vegetation along their edges during the wet season. 

Additionally, these pathways likely facilitated more efficient navigation through the 

reserve during the dry season. 

 

 

4.3 Distance to nearest water source 

It is well known that elephant movements are driven by access to vital resources (Vogel et 

al., 2020), with water being the most important for their survival. As evidence, several 

papers have portrayed water points as the most impactful environmental factor in the 

ecology of elephant movements, both for the direct use (MacFadyen et al., 2019; de Knegt 

et al., 2011; de Beer and van Aarde, 2008; Chamaillé-Jammes et al., 2007) and indirect 

use, for example for thermoregulation, shade, and mud bathing (Henley and Cook, 2019; 

Marshal et al., 2011; Smit et al., 2007; Stokke and du Toit, 2002). In this context, several 

authors have recognised the water as a driver for elephant choices and preferences 

(Chibeya et al., 2021; Sach et al., 2019; Taher et al., 2021; Talukdar et al., 2020; Wall et 
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al., 2013). Therefore, this study aimed to evaluate the influence of water sources on the 

movement patterns of the two matriarchs, using the distance to the nearest water source as 

a predictor variable. Considering mainly the results of the stationary state probabilities 

plots, they showed consistency between the two matriarchs in terms of persistence in 

certain states near the water source. Indeed, both Elza and Jean were in states 1 or 2 when 

closer to the water. However, although Elza was almost equally likely to be in state 1 and 

2 during the months considered, Jean showed a strong prevalence of being only in state 2 

when near water points during December. This latter peculiarity can be explained by what 

was discovered by Bastille-Rousseau et al. (2020), according to whom elephants did not 

show a marked interest in necessarily staying close to water during the wet season, a 

preference instead pronounced during the dry season. Overall, the same probability of 

lying in states 1 and 2 when in the vicinity of water may be the consequence of an elevated 

number of water points throughout the reserve. Although some of these are seasonal, thus 

empty during the dry season, the amount of artificial and semi-artificial water sources 

remains high in relation to the size of the reserve. Therefore, it is plausible that the herds 

of the two matriarchs alternated between prolonged and brief stops whenever they were 

near a water point, preferring, however, more short stops. In support of this, previous 

research has found that elephants’ movements to access water are generally frequent but 

of short duration (Polansky et al., 2015; Chamaillé-Jammes et al., 2013). Another 

hypothesis that may explain the high probability of being in state 2 in the proximity of the 

water may be that the matriarch briefly accelerated as it approached the water points, and 

then spent time in state 1 in close proximity to the water. Although the differences in speed 

between the different states were not calculated in this study, it is evident that the step 

length means of state 2 was greater than that one of state 1, therefore it can consequently 

be assumed that the average speed was higher in state 2. Furthermore, Chamaillé-Jammes 

et al. (2013) found out that elephants increased their speed when moving closer to water 

points, hence the previous assumption may be valid.  

In contrast, at the greatest distance from the water, Elza and Jean showed two 

different movement patterns. Particularly, Elza was always found in state 3, with an 

extremely high probability from September onwards. In contrast, Jean predominantly 

occupied state 2 when farthest from the water in most months, except for September and 

October when state 1 at maximum distance from the water prevailed, albeit without a 

significant dominance over the other two states. Nonetheless, combining the seven months 

into a single analysis, Elza remained consistent with the results on a monthly scale, while 
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Jean showed a prevalence of state 3 away from water, again consistent with the other 

matriarch. The disparity in Jean's results could be attributed to the impact of two months, 

July and November, within the combined analysis of seven months. However, it's 

important to note that the individual analysis of these specific months was not conducted, 

leading to a gap in our understanding of how these months may have influenced the overall 

assessment of movement patterns in relation to this covariate. Since water is a major 

determinant of elephant movement patterns, it is conceivable that the two matriarchs were 

in state 3 for most months when they were away from water, while they tended to stay as 

close to water as possible when in the other two states. It is therefore likely that they moved 

quickly from one water source to the other in order to spend as little time as possible at 

maximum distance from the water and reach another water source as quickly as possible. 

In support of this, previous articles have highlighted how water-orientated elephant 

movements can commence from tens of km away (Polansky et al., 2015). 

 

 

4.4 NDVI 

The importance of NDVI as a mean for comprehending the ecology of elephants has 

already been documented by several authors (Loarie et al., 2009; Wittemyer et al., 2007; 

Chamaillé-Jammes et al., 2007). The exceptional temporal precision of NDVI proved 

invaluable for examining elephant movements, as it enabled the correlation of vegetation 

productivity data with the simultaneous tracking of individual locations (Pettorelli et al., 

2011). On a monthly scale, both Elza and Jean showed the same relationship between 

NDVI and their movements. Particularly, not only the transition probabilities, but also the 

stationary state probabilities, indicated a constant and persistent presence in state 1 at the 

highest NDVI values, and in state 3 at the lowest values. This trend was highly consistent 

between the two matriarchs and across all the months considered. It is therefore clear that 

the movements of the matriarchs were strongly influenced by the presence or absence of 

high vegetation availability. The strong correlation observed between high NDVI values 

and presence in state 1 throughout the analysed period suggested that Elza and Jean 

exhibited a preference for consistently foraging in the most productive areas of the reserve. 

This preference may be attributed to the greater diversity in vegetation types and nutrient 

concentrations in the chosen area, which differ between different times of the year. Loarie 

et al. (2009) drew similar conclusions because in all seasons of their study, elephants 
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showed a constant selection of the greenest vegetation, taking advantage of phenologically 

diverse vegetation. Thus, the elephants purposely chose the areas in which to feed, 

denoting a high knowledge of the places where they could find the most qualitative 

available food, not only in the wet season but also and especially in the dry season. 

Consequently, these two matriarchs showed a preference for quality over quantity even in 

the dry season, an uncommon behaviour in open systems, where quantity is generally 

chosen over quality in the dry season (Tsalyuk et al., 2019; Young et al., 2009a). 

Nevertheless, Young et al. (2009a) found a high presence of elephants in grid-cells with 

elevated NDVI values during the dry season, which is in agreement with what was found 

in this study.  

In several months, particularly during the dry season, the transition probability 

values showed a higher probability of moving from state 3 to state 1 rather than from state 

2 to state 1 as the NDVI value increased. This peculiarity may be further evidence of the 

matriarchs' great knowledge of the reserve itself and where they could find the most 

productive patches throughout the reserve. Therefore, their movements were fast, direct 

and precise (state 3) towards a specific spot that, once reached, represented the final 

destination for feeding and foraging (state 1). In support of this, Boettiger et al. (2011) and 

Loarie et al. (2009) pointed out that elephants' optimal foraging strategies involved actively 

seeking out regions with high NDVI values. Furthermore, Wittemeyer et al. (2008) 

indicated that non-random movements are generally associated with feeding strategies, 

particularly when food and water supplies are scarce or heterogeneously distributed. 
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5 CONCLUSION AND RECOMMENDATIONS   

 

This research explored elephant movements under the influence of four different probable 

drivers (i.e., terrain roughness, distance to nearest road/path, distance to nearest water 

source, NDVI) in a fenced reserve in South Africa, to better understand movement patterns 

of such megaherbivores limited by fences. Particularly, it showed that movement states 

derived from step length and turning angle from hourly GPS positions of elephants with 

HMMs can be extremely effective in the analysis of elephant movement patterns per se 

and under the influence of different predictor variables. The findings of this study 

emphasised the importance of including terrain roughness, distance to nearest road/path, 

distance to nearest water source, and NDVI as a key driver of elephant movement patterns.  

In summary, using terrain roughness as a covariant contributed to the assessment 

that increased roughness led to a change in the movement pattern, resulting in elephants 

slowing down. Such results aided to evaluate whether elephants showed preferences for 

certain types of terrain, how terrain influences their movements, and how they navigate the 

landscape to meet their ecological needs. Moreover, understanding which roads or paths 

were frequently used by elephants can inform resource management decisions. Elephants 

showed to use the road network to navigate the landscape faster during the dry season, and 

to exploit roadside vegetation during the wet season. Therefore, managers could focus 

vegetation restoration efforts or water source maintenance along these routes to ensure 

Therefore, managers could concentrate their efforts on restoring vegetation or maintaining 

water sources along these routes to ensure that the needs of elephants and other wild 

animals are met. Additionally, persistence in state 3, the farthest from water sources, was 

found with direct and accurate movement patterns. Hence, the knowledge that elephants' 

movements are driven by water points with specific movement patterns has profound 

implications for conservation management within a fenced reserve. For instance, 

conservation manager can use this information to plan a rotation on water points available 

in order to avoid a repeated impact on the same patches of vegetation near water sources, 

giving vegetation time to recover. Finally, matriarchs consistently occurred in state 1, when 

NDVI values were highest, and in state 3, when NDVI values were lowest. Such strong 

correlation between elephant movements and high NDVI values can have several 

important conservation management implications within a fenced reserve: conservation 

managers can focus their habitat management efforts on areas with high NDVI values, as 
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these areas are likely critical for elephant foraging and nutrition. This may involve 

protecting and restoring key habitats that contribute to high NDVI values. All these 

strategies therefore have the common goal of promoting the conservation and welfare of 

elephants, maintaining an ecosystem balance that indirectly benefits the rest of the wildlife 

in the reserve. 

In terrestrial ecosystems where megaherbivores such as elephants serve as critical 

ecosystem engineers (Vanak et al., 2012; Shannon et al., 2011; Owen-Smith et al., 2006), 

it becomes imperative to not only understand the spatial distribution of individuals but also 

to discern the timing of behavioural changes and identify the pivotal factors driving these 

shifts (Birkett et al., 2012). Such understanding enables the development of more efficient 

conservation management strategies for the preservation of the species. Hence, future 

research could investigate elephant movement patterns across various temporal scales, 

including finer scales like daily or weekly observations, as well as broader scales such as 

seasonal or annual trends. This approach can aim to gain a comprehensive understanding 

of the underlying mechanisms and influences guiding their choices and preferences. 

Ultimately, these insights can inform initiatives aimed at enhancing conservation 

management plans for elephants. 

In conclusion, delving into the spatial ecology of elephants provides information 

that is of significant and, especially in the context of fenced reserves, even critical 

importance for the successful and efficient management and conservation not only of this 

species' habitat but also of the species itself (Chui, 2021). 

 

 

 

 

 

 

 

 

 

 



93 

 

6 REFERENCES 

 

Anadón, J. D., Wiegand, T., and Giménez, A. (2012) ‘Individual-based movement models 

reveals sex-biased effects of landscape fragmentation on animal movement.’, Ecosphere, 

3(7), pp. 1-32. Available at: https://doi.org/10.1890/ES11-00237.1 (Accessed: 21 August 

2023). 

 

Apps, C. D., McLellan, B. N., Kinley, T. A., and Flaa, J. P. (2001) ‘Scale-Dependent 

Habitat Selection by Mountain Caribou, Columbia Mountains.’, British Columbia on 

JSTOR, 65, pp.65-77. Available at: https://doi.org/3803278 (Accessed: 18 August 2023). 

 

Archie, E. A., Morrison, T. A., Foley, C. A., Moss, C. J., and Alberts, S. C. (2006a) 

‘Dominance rank relationships among wild female African elephants, Loxodonta 

africana.’, Animal Behaviour, 71(1), pp. 117-127. Available at: 

https://doi.org/10.1016/j.anbehav.2005.03.023 (Accessed: 27 August 2023). 

 

Archie, E. A., Moss, C. J., and Alberts, S. C. (2006b) ‘The ties that bind: Genetic 

relatedness predicts the fission and fusion of social groups in wild African elephants.’, 

Proceedings of the Royal Society B: Biological Sciences, 273(1586), pp. 513-522. 

Available at: https://doi.org/10.1098/rspb.2005.3361 (Accessed: 27 August 2023). 

 

Asner, G. P., Vaughn, N., Smit, I. P. J., and Levick, S. (2016) ‘Ecosystem-scale effects of 

megafauna in African savannas.’, Ecography, 39(2), pp. 240–252. Available at: 

https://doi.org/10.1111/ecog.01640 (Accessed: 13 August 2023). 

 

Augustine, D. J., and Mcnaughton, S. J. (2004) ‘Regulation of shrub dynamics by native 

browsing ungulates on East African rangeland.’, Journal of Applied Ecology, 41(1), pp. 

45-58. Available at: https://doi.org/10.1111/j.1365-2664.2004.00864.x (Accessed: 25 

August 2023). 

 

 

 



94 

 

Bagniewska, J. M., Hart, T., Harrington, L. A., and Macdonald, D. W. (2013) ‘Hidden 

Markov analysis describes dive patterns in semiaquatic animals.’, Behavioral Ecology, 

24(3), pp. 659-667. Available at: https://doi.org/10.1093/beheco/ars217 (Accessed: 21 

August 2023). 

 

Bastille-Rousseau, G., Wall, J., Douglas-Hamilton, I., Lesowapir, B., Loloju, B., Mwangi, 

N., and Wittemyer, G. (2020) ‘Landscape-scale habitat response of African elephants 

shows strong selection for foraging opportunities in a human dominated ecosystem.’, 

Ecography, 43(1), pp. 149–160. Available at: https://doi.org/10.1111/ecog.04240 

(Accessed: 10 September 2023). 

 

Baxter, P. W. J., and Getz, W. M. (2005) ‘A Model-Framed Evaluation of Elephant Effects 

On Tree And Fire Dynamics In African Savannas.’, Ecological Applications, 15(4), pp. 

1331-1341. Available at: https://doi.org/10.1890/02-5382 (Accessed: 25 August 2023). 

 

Baxter, P. W. J., and Getz, W. M. (2008) ‘Development and Parameterization of a Rain- 

and Fire-driven Model for Exploring Elephant Effects in African 

Savannas.’, Environmental Modeling and Assessment, 13, pp. 221–242. Available at: 

https://doi.org/10.1007/s10666-007-9091-9 (Accessed: 25 August 2023). 

 

Beirne, C., Houslay, T. M., Morkel, P., Clark, C. J., Fay, M., Okouyi, J., White, L. J., and 

Poulsen, J. R. (2021) ‘African forest elephant movements depend on time scale and 

individual behavior.’, Scientific Reports, 11(1), pp. 1-11. Available at: 

https://doi.org/10.1038/s41598-021-91627-z (Accessed: 20 August 2023). 

 

Berger, J. (2004) ‘The Last Mile: How to Sustain Long-Distance Migration in Mammals.’, 

Conservation Biology, 18(2), pp. 320-331. Available at: https://doi.org/10.1111/j.1523-

1739.2004.00548.x (Accessed: 22 August 2023). 

 

Berger, J. (2007) ‘Fear, human shields and the redistribution of prey and predators in 

protected areas.’, Biology letters, 3(6), pp. 620-623. Available at: 

https://doi.org/10.1098/rsbl.2007.0415 (Accessed: 10 September 2023). 

 



95 

 

Berti, E., Davoli, M., Buitenwerf, R., Dyer, A., Hansen, O. L. P., Hirt, M., Svenning, J.-C., 

Terlau, J. F., Brose, U., and Vollrath, F. (2022) ‘The r package enerscape: A general energy 

landscape framework for terrestrial movement ecology.’, Methods in Ecology and 

Evolution, 13(1), pp. 60–67. Available at: https://doi.org/10.1111/2041-210X.13734 

(Accessed: 13 August 2023). 

 

Berti, E., Rosenbaum, B., Brose, U., and Vollrath, F. (2023) ‘Energy landscapes direct the 

movement preferences of elephants.’, Authorea, pre-print version, pp. 1-23. Available at: 

DOI: 10.22541/au.168373276.62196439/v1 (Accessed: 13 June 2023). 

 

Birkett, P. J., Vanak, A. T., R. Muggeo, V. M., Ferreira, S. M., and Slotow, R. (2012) 

‘Animal Perception of Seasonal Thresholds: Changes in Elephant Movement in Relation 

to Rainfall Patterns.’, PLOS ONE, 7(6), pp. e38363. Available at: 

https://doi.org/10.1371/journal.pone.0038363 (Accessed: 18 August 2023). 

 

Blackwell, P. G. (2003) ‘Bayesian inference for Markov processes with diffusion and 

discrete components.’, Biometrika, 90(3), pp. 613-627. Available at: 

https://doi.org/10.1093/biomet/90.3.613 (Accessed: 22 August 2023). 

 

Blanc, J.J., Barnes, R.F.W., Craig, G.C., Dublin, H.T., Thouless, C.R., Douglas-Hamilton, 

I., and Hart, J.A. (2007) ‘African elephant status report 2007: an update from the African 

elephant database.’, Occasional Papers Series of the IUCN Species Survival Commission, 

No 33. IUCN/SSC African elephant Specialist Group. IUCN, Gland, Switzerland, pp. 1-

284. Available at: bit.ly/3sR6Cbf (Accessed: 24 August 2023). 

 

Blanché, L. A. (2021) Displacement of Wildlife Due to Anthropogenic-Induced Edge 

Effects in Small Game Reserves (Doctoral dissertation, Texas Christian University). 

Available at: https://bit.ly/3LHq3tn (Accessed: 08 September 2023). 

 

Boettiger, A. N., Wittemyer, G., Starfield, R., Volrath, F., Douglas-Hamilton, I., and Getz, 

W. M. (2011) ‘Inferring ecological and behavioral drivers of African elephant movement 

using a linear filtering approach.’, Ecology, 92(8), pp. 1648-1657. Available at: 

https://doi.org/10.1890/10-0106.1 (Accessed: 11 September 2023). 

 



96 

 

Bohrer, G., Beck, P. S., Ngene, S. M., Skidmore, A. K., and Douglas-Hamilton, I. 

(2014) ‘Elephant movement closely tracks precipitation-driven vegetation dynamics in a 

Kenyan forest-savanna landscape.’, Movement Ecology, 2(2), pp. 1-15. Available at: 

https://doi.org/10.1186/2051-3933-2-2 (Accessed: 30 August 2023). 

 

Bolger, D. T., Newmark, W. D., Morrison, T. A., and Doak, D. F. (2008) ‘The need for 

integrative approaches to understand and conserve migratory ungulates.’. Ecology Letters, 

11(1), pp. 63-77. Available at: https://doi.org/10.1111/j.1461-0248.2007.01109.x 

(Accessed: 22 August 2023). 

 

Boundja, R. P., and Midgley, J. J. (2010) ‘Patterns of elephant impact on woody plants in 

the Hluhluwe-Imfolozi park, Kwazulu-Natal, South Africa.’, African Journal of Ecology, 

48(1), pp. 206-214. Available at: https://doi.org/10.1111/j.1365-2028.2009.01104.x 

(Accessed: 27 August 2023). 

 

Bowler, D. E., Benton, T. G., Bowler, D. E., and Benton, T. G. (2005) ‘Causes and 

consequences of animal dispersal strategies: Relating individual behaviour to spatial 

dynamics.’, Biological Reviews of the Cambridge Philosophical Society, 80, pp. 205–225. 

Available at: https ://doi.org/10.1017/S1464 79310 4006645 (Accessed: 23 August 2023). 

 

Brodie, J. F., Giordano, A. J., Ambu, L. (2015) ‘Differential responses of large mammals 

to logging and edge effects.’, Mammalian Biology - Zeitschrift für Säugetierkunde, 80(1), 

pp. 7–13. Available at: doi:10.1016/j.mambio.2014.06.001 (Accessed: 08 September 

2023). 

 

Brown, J. L. (2014) ‘Comparative reproductive biology of elephants.’, In Reproductive 

Sciences in Animal Conservation: Progress and Prospects; Holt,W.V., Brown, J.L., 

Comizzoli, P., Eds.; Advances in Experimental Medicine and Biology, vol 753. Springer: 

New York, NY, USA, 2014, pp. 135–169. Available at: https://doi.org/10.1007/978-1-

4939-0820-2_8 (Accessed: 28 August 2023). 

 

 

 



97 

 

Cagnacci, F., Boitani, L., Powell, R. A., and Boyce, M. S. (2010) ‘Animal ecology meets 

gps‐based radiotelemetry: A perfect storm of opportunities and challenges.’, 

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 

365, pp. 2157–2162. Available at: https://doi.org/10.1098/rstb.2010.0107 (Accessed: 21 

August 2023). 

 

Campos-Arceiz, A., and Blake, S. (2011) ‘Megagardeners of the forest – the role of 

elephants in seed dispersal.’, Acta Oecologica, 37(6), pp. 542-553. Available at:  

https://doi.org/10.1016/j.actao.2011.01.014 (Accessed: 24 August 2023). 

 

Chamaillé-Jammes, S., Valeix, M., and Fritz, H. (2007) ‘Managing heterogeneity in 

elephant distribution: Interactions between elephant population density and surface-water 

availability.’ Journal of Applied Ecology, 44(3), pp. 625-633. Available at: 

https://doi.org/10.1111/j.1365-2664.2007.01300.x (Accessed: 10 September 2023). 

 

Chamaillé-Jammes, S., Mtare, G., Makuwe, E., and Fritz, H. (2013) ‘African Elephants 

Adjust Speed in Response to Surface-Water Constraint on Foraging during the Dry-

Season.’, PLOS ONE, 8(3), pp. e59164. Available at: 

https://doi.org/10.1371/journal.pone.0059164 (Accessed: 11 September 2023). 

 

Chase, M. J., Schlossberg, S., Griffin, C. R., Bouché, P. J. C., Djene, S. W., Elkan, P. W., 

Ferreira, S., Grossman, F., Kohi, E. M., Landen, K., Omondi, P., Peltier, A., Selier, S. A. 

J., Sutcliffe, R. (2016) ‘Continent-wide survey reveals massive decline in African savannah 

elephants.’, PeerJ, 4, pp. e2354. Available at: https://doi.org/10.7717/peerj.2354 

(Accessed: 30 August 2023). 

 

Chibeya, D., Wood, H., Cousins, S., Carter, K., Nyirenda, M. A., and Maseka, H. (2021) 

‘How do African elephants utilize the landscape during wet season? A habitat connectivity 

analysis for Sioma Ngwezi landscape in Zambia.’, Ecology and Evolution, 11(21), pp. 

14916–14931. Available at: https://doi.org/10.1002/ece3.8177 (Accessed: 13 August 

2023). 

 



98 

 

Chiyo, P. I., Archie, E. A., Hollister-Smith, J. A., Lee, P. C., Poole, J. H., Moss, C. J., and 

Alberts, S. C. (2011) ‘Association patterns of African elephants in all-male groups: The 

role of age and genetic relatedness.’, Animal Behaviour, 81(6), pp. 1093-1099. Available 

at:  https://doi.org/10.1016/j.anbehav.2011.02.013 (Accessed: 28 August 2023). 

 

Chiyo, P. I., Moss, C. J., and Alberts, S. C. (2012) ‘The influence of life history milestones 

and association networks on crop-raiding behavior in male African elephants.’, PLoS ONE, 

7(2), pp. e31382. Available at: https://doi.org/10.1371/journal.pone.0031382 (Accessed: 

28 August 2023). 

 

Chiyo, P. I., Wilson, J. W., Archie, E. A., Lee, P. C., Moss, C. J., and Alberts, S. C. (2014). 

The influence of forage, protected areas, and mating prospects on grouping patterns of 

male elephants. Behavioral Ecology, 25(6), pp. 1494-1504. Available at:  

https://doi.org/10.1093/beheco/aru152 (Accessed: 27 August 2023). 

 

Chui, Y. S. [崔驛選]. (2021) ‘Socio-behavioural and spatial ecology of African elephants 

(Loxodonta africana).’, (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR, 

pp. 1-376. Available at: https://hub.hku.hk/handle/10722/325812 (Accessed: 25 August 

2023). 

 

Codron, J., Codron, D., Sponheimer, M., Kirkman, K., Duffy, K. J., Raubenheimer, E. J., 

Mélice, J.-L., Grant, R., Clauss, M., and Lee-Thorp, J. A. (2012) ‘Stable isotope series 

from elephant ivory reveal lifetime histories of a true dietary generalist.’, Proceedings of 

the Royal Society B: Biological Sciences, 279(1737), pp. 2433-2441. Available at: 

https://doi.org/10.1098/rspb.2011.2472 (Accessed: 27 August 2023). 

 

Comley, J. (2019). Carnivore intra-guild competition in Selati Game Reserve, Limpopo 

Province, South Africa (Doctoral dissertation, PhD thesis, Rhodes University). Available 

at: bit.ly/47DZ9vQ (Accessed: 14 August 2023). 

 

Cook, R. M., and Henley, M. D. (2019) ‘The management dilemma: Removing elephants 

to save large trees.’, Koedoe: African Protected Area Conservation and Science, 61(1), pp. 

1-12. Available at: https://hdl.handle.net/10520/EJC-1dbc10e923 (Accessed: 26 August 

2023). 



99 

 

Coverdale, T. C., Kartzinel, T. R., Grabowski, K. L., Shriver, R. K., Hassan, A. A., Goheen, 

J. R., Palmer, T. M., and Pringle, R. M. (2016) ‘Elephants in the understory: Opposing 

direct and indirect effects of consumption and ecosystem engineering by megaherbivores.’, 

Ecology, 97(11), pp. 3219-3230. Available at: https://doi.org/10.1002/ecy.1557 (Accessed: 

24 August 2023). 

 

Cumming, D. H., Fenton, M. B., Rautenbach, I. L., Taylor, R. D., Cumming, G. S., 

Cumming, M. S., and Portfors, C. V. (1997) ‘Elephants, woodlands and biodiversity in 

southern Africa.’, South African Journal of Science, 93(5), pp. 231-236. Available at: 

bit.ly/3RjrgLk (Accessed: 26 August 2023). 

 

Cushman, S. A., Chase, M., and Griffin, C. (2005) ‘Elephants in space and time.’ Oikos, 

109(2), pp. 331-341. Available at: https://doi.org/10.1111/j.0030-1299.2005.13538.x 

(Accessed: 22 August 2023). 

 

Cushman, S. A., and Huettmann, F. (2010). Spatial Complexity, Informatics, and Wildlife 

Conservation || Mapping Landscape Resistance to Identify Corridors and Barriers for 

Elephant Movement in Southern Africa., 10.1007/978-4-431-87771-4(Chapter 19), pp. 

349–367. Available at: doi:10.1007/978-4-431-87771-4_19 (Accessed: 08 September 

2023). 

 

de Beer, Y., Kilian, W., Versfeld, W., and Van Aarde, R. (2006) ‘Elephants and low rainfall 

alter woody vegetation in Etosha National Park, Namibia.’, Journal of Arid Environments, 

64(3), pp. 412-421. Available at: https://doi.org/10.1016/j.jaridenv.2005.06.015 

(Accessed: 24 August 2023). 

 

de Beer, Y., and Van Aarde, R. (2008) ‘Do landscape heterogeneity and water distribution 

explain aspects of elephant home range in southern Africa's arid savannas?’, Journal of 

Arid Environments, 72(11), pp. 2017-2025. Available at: 

https://doi.org/10.1016/j.jaridenv.2008.07.002 (Accessed: 29 August 2023). 

 

 

 



100 

 

de Boer, W., Van Oort, J., Grover, M., and Peel, M. (2015) ‘Elephant-mediated habitat 

modifications and changes in herbivore species assemblages in Sabi Sand.’, South Africa. 

European Journal of Wildlife Research, 61(4), pp. 491–503. Available at: 

https://doi.org/10.1007/s10344-015-0919-3 (Accessed: 31 August 2023). 

 

de Knegt, H. J., Hengeveld, G. M., Van Langevelde, F., De Boer, W. F., and Kirkman, K. 

P. (2007) ‘Patch density determines movement patterns and foraging efficiency of large 

herbivores.’, Behavioral Ecology, 18(6), pp. 1065-1072. Available at: 

https://doi.org/10.1093/beheco/arm080 (Accessed: 19 August 2023). 

 

de Knegt, H. J., van Langevelde, F., Skidmore, A. K., Delsink, A., Slotow, R., Henley, S., 

Bucini, G., de Boer, W. F., Coughenour, M. B., Grant, C. C., Heitkönig, I. M. A., Henley, 

M. D., Knox, N. M., Kohi, E. M., Mwakiwa, E., Page, B. R., Peel, M., Pretorius, Y., van 

Wieren, S. E., and Prins, H. H. T. (2011) ‘The spatial scaling of habitat selection by African 

elephants.’, Journal of Animal Ecology, 80(1), pp. 270-281. Available at: 

https://doi.org/10.1111/j.1365-2656.2010.01764.x (Accessed: 10 September 2023). 

 

de Silva, S., and Wittemyer, G. A. (2012) ‘Comparison of Social Organization in Asian 

Elephants and African Savannah Elephants.’, International Journal of Primatology, 33, 

pp. 1125–1141. Available at: https://doi.org/10.1007/s10764-011-9564-1 (Accessed: 28 

August 2023). 

 

Demarchi, M. W. (2003) ‘Migratory Patterns and Home Range Size of Moose in the 

Central Nass Valley, British Columbia.’, Northwestern Naturalist, 84(3), pp. 135–141. 

Available at: https://doi.org/10.2307/3536539 (Accessed: 22 August 2023). 

 

Dingemanse, N. J., Kazem, A. J. N., Réale, D., and Wright, J. (2010) ‘Behavioural reaction 

norms: Animal personality meets individual plasticity.’, Trends in Ecology & Evolution, 

25(2), pp. 81-89. Available at: https://doi.org/10.1016/j.tree.2009.07.013 (Accessed: 27 

August 2023). 

 

 



101 

 

Doughty, C. E., Wolf, A., and Malhi, Y. (2013) ‘The legacy of the Pleistocene megafauna 

extinctions on nutrient availability in Amazonia.’, Nature Geoscience, 6(9), pp. 761-764. 

Available at: https://doi.org/10.1038/ngeo1895 (Accessed: 19 August 2023). 

 

Douglas-Hamilton, I., Krink, T., and Vollrath, F. (2005) ‘Movements and corridors of 

African elephants in relation to protected areas.’, Naturwissenschaften, 92, pp. 158-163. 

Available at: https://doi.org/10.1007/s00114-004-0606-9 (Accessed: 29 August 2023). 

 

Dublin, H. T. (2003). IUCN/SSC AfESG Guidelines for the in situ Translocation of the 

African Elephant for Conservation Purposes. IUCN. 

 

Dudley, J. P. (2000) ‘Seed Dispersal by Elephants in Semiarid Woodland Habitats of 

Hwange National Park, Zimbabwe.’, Biotropica, 32(3), pp. 556–561. Available at: 

http://www.jstor.org/stable/2663889 (Accessed: 24 August 2023). 

 

Duffy, K. J., Dai, X., Shannon, G., Slotow, R., and Page, B. (2011) ‘Movement patterns of 

African elephants (Loxodonta africana) in different habitat types.’, South African Journal 

of Wildlife Research-24-month delayed open access, 41(1), pp. 21-28. Available at: 

https://hdl.handle.net/10520/EJC117366 (Accessed: 08 September 2023). 

 

Dunkin, R. C., Wilson, D., Way, N., Johnson, K., and Williams, T. M., (2013) ‘Climate 

influences thermal balance and water use in African and Asian elephants: physiology can 

predict drivers of elephant distribution.’, Journal of Experimental Biology, 216(15), pp. 

2939-2952. Available at: https://doi.org/10.1242/jeb.080218 (Accessed: 30 August 2023). 

 

Earl, J. E., and Zollner, P. A. (2017) ‘Advancing research on animal-transported subsidies 

by integrating animal movement and ecosystem modelling.’, Journal of Animal Ecology, 

86(5), pp. 987-997. Available at: https://doi.org/10.1111/1365-2656.12711 (Accessed: 21 

August 2023). 

 

Eckhardt, H. C., van Wilgen, B. V., and Biggs, H. C. (2001) ‘Trends in woody vegetation 

cover in the Kruger National Park, South Africa, between 1940 and 1998.’, African Journal 

of Ecology, 38(2), pp. 108-115. Available at: https://doi.org/10.1046/j.1365-

2028.2000.00217.x (Accessed: 25 August 2023). 



102 

 

Estes, J. A., Terborgh, J., Brashares, J. S., Power, M. E., Berger, J., Bond, W. J., Carpenter, 

S. R., Essington, T. E., Holt, R. D., C. Jackson, J. B., Marquis, R. J., Oksanen, L., Oksanen, 

T., Paine, R. T., Pikitch, E. K., Ripple, W. J., Sandin, S. A., Scheffer, M., Schoener, T. W., 

andWardle, D. A. (2011) ‘Trophic Downgrading of Planet Earth.’, Science, 333(6040), pp. 

301-306. Available at:  https://doi.org/1205106 (Accessed: 24 August 2023). 

 

Evans, K. E., and Harris, S. (2008) ‘Adolescence in male African elephants, Loxodonta 

africana, and the importance of sociality.’, Animal Behaviour, 76(3), pp. 779-787. 

Available at: https://doi.org/10.1016/j.anbehav.2008.03.019 (Accessed: 28 August 2023). 

 

Evans, L. J., Goossens, B., Davies, A. B., Reynolds, G., and Asner, G. P. (2020) ‘Natural 

and anthropogenic drivers of Bornean elephant movement strategies.’ Global Ecology and 

Conservation, 22, pp. e00906. Available at: https://doi.org/10.1016/j.gecco.2020.e00906 

(Accessed: 08 September 2023). 

 

Fahrig, L. (2007) ‘Non-optimal animal movement in human-altered landscapes.’, 

Functional Ecology, 21(6), pp. 1003-1015. Available at: https://doi.org/10.1111/j.1365-

2435.2007.01326.x (Accessed: 20 August 2023). 

 

Fernando, P., and Leimgruber, P. (2011) ‘Asian elephants and seasonally dry 

forests.’, Ecology and conservation of seasonally dry forests in Asia, pp. 151-163. 

Available at: https://bit.ly/3PXobiF (Accessed: 08 September 2023). 

 

Fishlock, V., and Lee, P. C. (2013) ‘Forest elephants: Fission–fusion and social arenas.’ 

Animal Behaviour, 85(2), pp. 357-363. Available at: 

https://doi.org/10.1016/j.anbehav.2012.11.004 (Accessed: 28 August 2023). 

 

Forester, J. D., Ives, A. R., Turner, M. G., Anderson, D. P., Fortin, D., Beyer, H. L., Smith, 

D. W., and Boyce, M. S. (2007) ‘State–Space Models Link Elk Movement Patterns to 

Landscape Characteristics in Yellowstone National Park.’, Ecological Monographs, 77(2), 

pp. 285-299. Available at: https://doi.org/10.1890/06-0534 (Accessed: 21 August 2023). 

 

 



103 

 

Freeman, E. W., Whyte, I., and Brown, J. L. (2009) ‘Reproductive evaluation of elephants 

culled in Kruger National Park, South Africa between 1975 and 1995.’, African Journal of 

Ecology, 47(2), pp. 192-201. Available at: https://doi.org/10.1111/j.1365-

2028.2008.00957.x (Accessed: 28 August 2023). 

 

Franke, A., Caelli, T., and Hudson, R. J. (2004) ‘Analysis of movements and behavior of 

caribou (Rangifer tarandus) using hidden Markov models.’, Ecological Modelling, 173(2-

3), pp. 259-270. Available at: https://doi.org/10.1016/j.ecolmodel.2003.06.004 (Accessed: 

21 August 2023). 

 

Fritz, H. (2017) ‘Long-term field studies of elephants: Understanding the ecology and 

conservation of a long-lived ecosystem engineer.’, Journal of Mammalogy, 98(3), pp. 603-

611. Available at:  https://doi.org/10.1093/jmammal/gyx023 (Accessed: 25 August 2023). 

 

Fryxell, J. M., Hazell, M., Borger, L., Dalziel, B. D., Haydon, D. T., Morales, J. M., and 

Rosatte, R. C. (2008) ‘Multiple movement modes by large herbivores at multiple 

spatiotemporal scales.’, Proceedings of the National Academy of Sciences of the United 

States of America, 105, pp. 19114–19119. Available at: 

https://doi.org/10.1073/pnas.0801737105 (Accessed: 18 August 2023). 

 

Gerhardt-Weber, K. E. M. (2011). Elephant movements and humanelephant conflict in a 

transfrontier conservation area. Stellenbosch: University of Stellenbosch. 

 

Goldenberg, S. Z., De Silva, S., Rasmussen, H. B., Douglas-Hamilton, I., and Wittemyer, 

G. (2014) ‘Controlling for behavioural state reveals social dynamics among male African 

elephants, Loxodonta africana.’, Animal Behaviour, 95, pp. 111-119. Available at:  

https://doi.org/10.1016/j.anbehav.2014.07.002 (Accessed: 28 August 2023). 

 

Goldenberg, S. Z., Douglas-Hamilton, I., and Wittemyer, G. (2018) ‘Inter-generational 

change in African elephant range use is associated with poaching risk, primary productivity 

and adult mortality.’ Proceedings of the Royal Society B: Biological Sciences, 285(1879), 

pp. 20180286. Available at: https://doi.org/10.1098/rspb.2018.0286 (Accessed: 29 August 

2023). 



104 

 

Grant, C. C., Bengis, R., Balfour, D., Peel, M., Davies-Mostert, H., Killian, H., Little, R., 

Smit, I., Garai, M., Henley, M., Anthony, B., and Hartley, P. (2008) ‘Controlling the 

distribution of elephants.’ Assessment of South African Elephant Management. (eds. R.J. 

Scholes & K.G. Mennell), pp 329–369.Witwatersrand University Press, Johannesburg. 

Available at: https://philpapers.org/rec/GRACTD-2 (Accessed: 30 August 2023). 

 

Gravel, D., Massol, F., and Leibold, M. A. (2016) ‘Stability and complexity in model meta-

ecosystems.’, Nature Communications, 7(1), pp. 1-8. Available at: 

https://doi.org/10.1038/ncomms12457 (Accessed: 20 August 2023). 

 

Gross, R. B., and Heinsohn, R. (2023) ‘Elephants Not in the Room: Systematic Review 

Shows Major Geographic Publication Bias in African Elephant Ecological Research.’, 

Diversity, 15(3), pp. 451-463. Available at: https://doi.org/10.3390/d15030451 (Accessed: 

24 August 2023). 

 

Grubb, P., Groves, C. P., Dudley, J. P., and Shoshani, J. (2000) ‘Living African elephants 

belong to two species: Loxodonta africana (Blumenbach, 1797) and Loxodonta cyclotis 

(Matschie, 1900).’, Elephant, 2(4), pp. 1-4. Available at: 10.22237/elephant/1521732169 

(Accessed: 20 August 2023). 

 

Guerbois, C., Chapanda, E., and Fritz, H. (2012) ‘Combining multi-scale socio-ecological 

approaches to understand the susceptibility of subsistence farmers to elephant crop raiding 

on the edge of a protected area.’ Journal of Applied Ecology, 49, pp. 1149–1158. Available 

at: https://doi.org/10.1111/j.1365-2664.2012.02192.x (Accessed: 30 August 2023). 

 

Guimaraes, R. G., Galetti, M., and Jordano, P. (2008) ‘Seed Dispersal Anachronisms: 

Rethinking the Fruits Extinct Megafauna Ate.’, PLOS ONE, 3(3), pp. e1745. Available at:  

https://doi.org/10.1371/journal.pone.0001745 (Accessed: 19 August 2023). 

 

Guldemond, R., and Van Aarde, R. (2007) ‘The impact of elephants on plants and their 

community variables in South Africa's Maputaland.’, African Journal of Ecology, 45(3), 

pp. 327-335. Available at: bit.ly/3sQ1rs2 (Accessed: 26 August 2023). 

 



105 

 

Guldemond, R., and Van Aarde, R. (2008) ‘A meta-analysis of the impact of African 

elephants on savanna vegetation.’ The Journal of Wildlife Management, 72(4), pp. 892–

899. Available at: https://doi.org/10.2193/2007-072 (Accessed: 31 August 2023). 

 

Guldemond, R. A., Purdon, A., and van Aarde, R. J. (2017) ‘A systematic review of 

elephant impact across Africa.’, PLOS ONE, 12(6), pp. e0178935. Available at: 

https://doi.org/10.1371/journal.pone.0178935 (Accessed: 25 August 2023). 

 

Gusset, M., Ryan, S. J., Hofmeyr, M., Davies-Mostert, H. T., Graf, J. A., Owen, C., 

Szykman, M., Macdonald, D. W., Monfort, S. L., Wildt, D. E., Maddock, A. H., L. Mills, 

M. G., Slotow, R., and Somers, M. J. (2008) ‘Efforts Going to the Dogs? Evaluating 

Attempts to Re-Introduce Endangered Wild Dogs in South Africa.’, Journal of Applied 

Ecology, 45(1) pp. 100-108. Available at: https://doi.org/20143956 (Accessed: 30 August 

2023). 

 

Hanks, J. (1972) ‘Growth of the African elephant (Loxodonta africana).’, African Journal 

of Ecology, 10(4), pp. 251-272. Available at: https://doi.org/10.1111/j.1365-

2028.1972.tb00870.x (Accessed: 24 August 2023). 

 

Harris, G., Thirgood, S., Hopcraft, J. G. C., Cromsigt, J. P., and Berger, J. (2009) ‘Global 

decline in aggregated migrations of large terrestrial mammals.’, Endangered Species 

Research, 7(1), pp. 55-76. Available at:  DOI: https://doi.org/10.3354/esr00173 (Accessed: 

20 August 2023). 

 

Haynes, G. (2012) ‘Elephants (and extinct relatives) as earth-movers and ecosystem 

engineers.’, Geomorphology, 157-158, pp. 99-107. Available at: 

https://doi.org/10.1016/j.geomorph.2011.04.045 (Accessed: 24 August 2023). 

 

Hayward, M. W., Adendorff, J., O’Brien, J., Sholto-Douglas, A., Bissett, C., Moolman, L. 

C., Bean, P., Fogarty, A., Howarth, D., Slater R. and Kerley G. I. H. (2007) ‘Practical 

considerations for the reintroduction of large, terrestrial, mammalian predators based on 

reintroductions to South Africa’s Eastern Cape Province.’, The Open Conservation Biology 

Journal, 1 , pp. 1–11. Available at: doi:10.2174/1874-8392/07 (Accessed: 30 August 

2023). 



106 

 

Henley, M. D., and Cook, R. (2019) ‘The management dilemma: Removing elephants to 

save large trees.’, Koedoe, 61(1), pp. 1-12. Available at: https://hdl.handle.net/10520/EJC-

1dbc10e923 (Accessed: 10 September 2023). 

 

Hertel, A. G., Niemelä, P. T., Dingemanse, N. J., and Mueller, T. (2020) ‘A guide for 

studying among-individual behavioral variation from movement data in the wild.’, 

Movement Ecology, 8(1), pp. 30-43. Available at: https://doi.org/10.1186/s40462-020-

00216-8 (Accessed: 27 August 2023). 

 

Hijmans, R. J., Bivand, R., Pebesma, E., Sumner, M. D. (2023) ‘terra: Spatial Data 

Analysis’ (1.7-46). Available at: https://rspatial.org/ 

 

Hoare, R. (1999) ‘Determinants of human–elephant conflict in a land-use mosaic.’, 

Journal of Applied Ecology, 36(5), pp. 689–700. Available at: 

https://doi.org/10.1046/j.1365-2664.1999.00437.x (Accessed: 31 August 2023). 

 

Holdo, R. M. (2003) ‘Woody plant damage by African elephants in relation to leaf nutrients 

in western Zimbabwe’, Journal of Tropical Ecology, Cambridge University Press, 19(2), 

pp. 189–196. Available at: doi: 10.1017/S0266467403003213. (Accessed: 27 August 

2023). 

 

Hollister, J., Shah, T., Nowosad, J., Robitaille, A. L., Beck, M. W., Johnson, M. (2023) 

‘elevatr: Access Elevation Data from Various APIs’ (0.99.0). Available at: 

https://github.com/jhollist/elevatr/ 

 

Holzmann, H., Munk, A., Suster, M., Zucchini, W. (2006) ‘Hidden Markov models for 

circular and linear-circular time series.’, Environmental and Ecological Statistics, 13, pp. 

325–347. Available at:  https://doi.org/10.1007/s10651-006-0015-7 (Accessed: 23 August 

2023). 

 

Hooten, M. B., Johnson, D. S., McClintock, B. T., and Morales, J. M. (2017). Animal 

movement: statistical models for telemetry data. CRC press. 



107 

 

Howes, B., Doughty, L. S. and Thompson, S. (2020) ‘African elephant feeding preferences 

in a small South African fenced game reserve.’ Journal for Nature Conservation, 53, pp. 

1-9. Available at: https://doi.org/10.1016/j.jnc.2019.03.001 (Accessed: 25 August 2023). 

 

Ihwagi, F. W., Chira, R. M., Kironchi, G., Vollrath, F., and Douglas-Hamilton, I. (2012) 

‘Rainfall pattern and nutrient content influences on African elephants’ debarking behaviour 

in Samburu and Buffalo Springs National Reserves, Kenya.’, African Journal of Ecology, 

50(2), pp. 152-159. Available at: https://doi.org/10.1111/j.1365-2028.2011.01305.x 

(Accessed: 27 August 2023). 

 

Jacobs, O. S., and Biggs, R. (2002) ‘The impact of the African elephant on marula trees in 

the Kruger National Park.’, African Journal of Wildlife Research, 32(1), pp. 13-22. 

Available at: https://hdl.handle.net/10520/EJC117144 (Accessed: 25 August 2023). 

 

Jachowski, D. S., Slotow, R., and Millspaugh, J. J. (2013) ‘Corridor use and streaking 

behavior by African elephants in relation to physiological state.’, Biological Conservation, 

167, pp. 276–282. Available at: https://doi.org/10.1016/j.biocon.2013.08.005 (Accessed: 

30 August 2023). 

 

Jarman, P. J. (1972) ‘Seasonal Distribution of Large Mammal Populations in the Unflooded 

Middle Zambezi Valley.’, Journal of Applied Ecology, 9(1), pp. 283–299. Available at: 

https://doi.org/10.2307/2402062 (Accessed: 26 August 2023). 

 

Jiang, F., Song, P., Zhang, J., Cai, Z., Chi, X., Gao, H., Qin, W., Li, S., and Zhang, T. (2020) 

‘Assessing the impact of climate change on the spatio-temporal distribution of foot-and-

mouth disease risk for elephants.’, Global Ecology and Conservation, 23, pp. e01176. 

https://doi.org/10.1016/j.gecco.2020.e01176 (Accessed: 24 August 2023). 

 

Johnson, M. B., Clifford, S. L., Goossens, B., Nyakaana, S., Curran, B., White, L. J. T., 

Wickings, E. J., Bruford, M. W. (2007) ‘Complex phylogeographic history of central 

African forest elephants and its implications for taxonomy.’, BMC Evolutionary Biology, 

7, pp. 244. Available at: https://doi.org/10.1186/1471-2148-7-244 (Accessed: 23 August 

2023). 

 



108 

 

Jonsen, I. D., Flemming, J. M., and Myers, R. A. (2005) ‘Robust State–Space Modeling of 

Animal Movement Data.’, Ecology, 86(11), pp. 2874–2880. Available at: 

https://doi.org/10.1890/04-1852 (Accessed: 13 August 2023). 

 

Jonsen, I., Basson, M., Bestley, S., Bravington, M., Patterson, T., Pedersen, M., Thomson, 

R., Thygesen, U., and Wotherspoon, S. (2013) ‘State-space models for bio-loggers: A 

methodological road map.’, Deep Sea Research Part II: Topical Studies in Oceanography, 

88-89, pp. 34-46. Available at: https://doi.org/10.1016/j.dsr2.2012.07.008 (Accessed: 23 

August 2023). 

 

Karelus, D. L., McCown, J. W., Scheick, B. K., Bolker, B. M., and Oli, M. K. (2017) 

’Effects of environmental factors and landscape features on movement patterns of Florida 

black bears.’, Journal of Mammalogy, 98(5), pp. 1463-1478. Available at: 

https://doi.org/10.1093/jmammal/gyx066 (Accessed: 20 August 2023). 

 

Kays, R., Crofoot, M. C., Jetz, W., and Wikelski, M. (2015) ‘Terrestrial animal tracking as 

an eye on life and planet.’ Science, 348(6240), pp. 2478- 2489. Available at: 

https://doi.org/aaa2478 (Accessed: 20 August 2023). 

 

Kohi, E. M., S. Peel, M. J., Slotow, R., A. Heitkönig, I. M., Skidmore, A., and T. Prins, H. 

H. (2011) ‘African Elephants Loxodonta africana Amplify Browse Heterogeneity in 

African Savanna.’, Biotropica, 43(6), pp. 711-721. Available at: 

https://doi.org/10.1111/j.1744-7429.2010.00724.x (Accessed: 24 August 2023). 

 

Kos, M., Hoetmer, A. J., Pretorius, Y., de Boer, W. F., de Knegt, H., Grant, C. C., Kohi, E., 

Page, B., Peel, M., Slotow, R., van der Waal, C., van Wieren, S. E., Prins, H. H. T., and van 

Langevelde, F. (2012) ‘Seasonal diet changes in elephant and impala in mopane 

woodland.’, European Journal of Wildlife Research, 58(1), pp. 279–287. Available at: 

https://doi.org/10.1007/s1034 4-011-0575-1 (Accessed: 26 August 2023). 

 

Kottek, M., Grieser, J., Beck, C., Rudolf, B. and Rubel, F. (2006) ‘World map of the 

Köppen-Geiger climate classification updated.’, Meteorologische Zeitschrift 15, pp. 259–

263. Available at: bit.ly/3P2O8Mr (Accessed: 14 August 2023). 



109 

 

Landman, M., and Kerley, G. I. (2014) ‘Elephant both Increase and Decrease Availability 

of Browse Resources for Black Rhinoceros.’, Biotropica, 46(1), pp. 42-49. Available at:  

https://doi.org/10.1111/btp.12066 (Accessed: 26 August 2023). 

 

Langrock, R., King, R., Matthiopoulos, J., Thomas, L., Fortin, D., and Morales, J. M. 

(2012) ‘Flexible and practical modeling of animal telemetry data: Hidden Markov models 

and extensions.’, Ecology, 93(11), pp. 2336-2342. Available at: https://doi.org/10.1890/11-

2241.1 (Accessed: 13 August 2023). 

 

Langrock, R., C. Hopcraft, J. G., Blackwell, P. G., Goodall, V., King, R., Niu, M., 

Patterson, T. A., Pedersen, M. W., Skarin, A., and Schick, R. S. (2014) ‘Modelling group 

dynamic animal movement.’, Methods in Ecology and Evolution, 5(2), pp. 190-199. 

Available at: https://doi.org/10.1111/2041-210X.12155 (Accessed: 22 August 2023). 

 

Laursen, L., and Bekoff, M. (1978) Loxodonta africana. Mammalian Species (92), 1-8. 

Oxford University Press. 

 

Laws, R. M. (1970) ‘Biology of African elephants.’ Science Progress (1933- ), 58(230), 

pp. 251–262. Available at: http://www.jstor.org/stable/43419958 (Accessed: 26 August 

2023). 

 

Lee, P. C., Poole, J. H., Njiraini, N., Sayialel, C. N., and Moss, C. J. (2011) ‘Male social 

dynamics: Independence and beyond.’, In C. J. Moss, H. Croze & P. C. Lee (Eds.), The 

Amboseli elephants: A long-term perspective on a long-lived mammal. Chicago: 

University of Chicago Press. Chapter 17, pp. 260-271. Available at: 

https://doi.org/10.7208/chicago/9780226542263.003.0017 (Accessed: 27 August 2023). 

 

Leggett, K. E. A. (2006) ‘Home Range and Seasonal Movement of Elephants in the 

Kunene Region, Northwestern Namibia.’, African Zoology, 41(1), pp. 17-36. Available at: 

https://doi.org/10.1080/15627020.2006.11407332 (Accessed: 29 August 2023). 

 

Lindeque, M., and Lindeque, P. M. (1991) ‘Satellite tracking of elephants in northwestern 

Namibia.’ African Journal of Ecology, 29(3), pp. 196-206. Available at: 

https://doi.org/10.1111/j.1365-2028.1991.tb01002.x (Accessed: 26 August 2023). 



110 

 

Loarie, S. R., Aarde, R. J. V., and Pimm, S. L. (2009) ‘Fences and artificial water affect 

African savannah elephant movement patterns.’, Biological Conservation, 142(12), pp. 

3086-3098. Available at:  https://doi.org/10.1016/j.biocon.2009.08.008 (Accessed: 29 

August 2023).  

 

Lombard, A. T., Johnson, C. F., Cowling, R. M., and Pressey, R. L. (2001) ‘Protecting 

plants from elephants: Botanical reserve scenarios within the Addo Elephant National 

Park, South Africa.’, Biological Conservation, 102(2), pp. 191-203. Available at: 

https://doi.org/10.1016/S0006-3207(01)00056-8 (Accessed: 25 August 2023). 

 

Lusseau, D. (2003) ‘Effects of Tour Boats on the Behavior of Bottlenose Dolphins: Using 

Markov Chains to Model Anthropogenic Impacts.’, Conservation Biology, 17(6), pp. 

1785-1793. Available at: https://doi.org/10.1111/j.1523-1739.2003.00054.x (Accessed: 21 

August 2023). 

 

Mabille, G., Dussault, C., Ouellet, J. P., and Laurian, C. (2012) ‘Linking trade-offs in 

habitat selection with the occurrence of functional responses for moose living in two 

nearby study areas.’, Oecologia, 170, pp. 965–977. Available at: 

https://doi.org/10.1007/s00442-012-2382-0 (Accessed: 27 August 2023). 

 

MacFadyen, S., Hui, C., Verburg, P. H., and Van Teeffelen, A. J. A. (2019) ‘Spatiotemporal 

distribution dynamics of elephants in response to density, rainfall, rivers and fire in Kruger 

National Park, South Africa.’ Diversity and Distributions, 25(6), pp. 880-894. Available at: 

https://doi.org/10.1111/ddi.12907 (Accessed: 10 September 2023). 

 

Mackey, R., Page, B., Duffy, K., and Slotow, R. (2006) ‘Modelling elephant population 

growth in small, fenced, South African reserves.’ South African Journal of Wildlife 

Research, 36(1), pp. 33–43. Available at: https://hdl.handle.net/10520/EJC117230 

(Accessed: 31 August 2023). 

 

 

 

 



111 

 

Marshal, J. P., Rajah, A., Parrini, F., Henley, M. D., Henley, S. R., and Erasmus, B. N. 

(2011) ‘Scale-dependent selection of greenness by African elephants in the Kruger-private 

reserve transboundary region, South Africa.’, European Journal of Wildlife Research, 

57(3), pp. 537-548. Available at: https://doi.org/10.1007/s10344-010-0462-1 (Accessed: 

10 September 2023). 

 

McClintock, B. T., Langrock, R., Gimenez, O., Cam, E., Borchers, D. L., Glennie, R., and 

Patterson, T. A. (2020) ‘Uncovering ecological state dynamics with hidden Markov 

models. Ecology Letters, 23(12), pp. 1878–1903. Available at: 

https://doi.org/10.1111/ele.13610 (Accessed: 13 August 2023). 

 

McKellar, A. E., Langrock, R., Walters, J. R., and Kesler, D. C. (2015) ‘Using mixed 

hidden Markov models to examine behavioral states in a cooperatively breeding bird.’, 

Behavioral Ecology, 26(1), pp. 148-157. Available at: 

https://doi.org/10.1093/beheco/aru171 (Accessed: 18 August 2023). 

 

Meenakshi, B., Haariharan, N. C., Krishnakanth, L., and Abishek, J. (2022) ‘Animal 

Intrusion Detection and Ranging system using YOLOv4 and LoRa.’, In 2022 International 

Conference on Power, Energy, Control and Transmission Systems (ICPECTS) (pp. 1-6). 

IEEE. Available at: doi: 10.1109/ICPECTS56089.2022.10047729 (Accessed: 18 August 

2023). 

 

Michelot, T., Langrock, R., and Patterson, T. A. (2016) ‘moveHMM: An R package for the 

statistical modelling of animal movement data using hidden Markov models.’, Methods in 

Ecology and Evolution, 7(11), pp. 1308–1315. Available at: https://doi.org/10.1111/2041-

210X.12578 (Accessed: 16 June 2023). 

 

Michelot, T., Langrock, R., and Patterson, T. (2023) ‘moveHMM: An R package for the 

analysis of animal movement data.’ ArXiv Preprint, pp. 1-24. Available at: 

bit.ly/3KNH4BI (Accessed: 13 June 2023). 

 

 



112 

 

Mole, M. A., Rodrigues DÁraujo, S., Van Aarde, R. J., Mitchell, D., and Fuller, A. (2016) 

‘Coping with heat: Behavioural and physiological responses of savanna elephants in their 

natural habitat.’, Conservation Physiology, 4(1). Available at: 

https://doi.org/10.1093/conphys/cow044 (Accessed: 30 August 2023). 

 

Morales, J. M., Haydon, D. T., Frair, J., Holsinger, K. E., and Fryxell, J. M. (2004) 

‘Extracting more out of relocation data: building movement models as mixtures of random 

walks.’, Ecology, 85(9), pp. 2436-2445. Available at: https://doi.org/10.1890/03-0269 

(Accessed: 21 August 2023). 

 

Morales, J. M., Moorcroft, P. R., Matthiopoulos, J., Frair, J. L., Kie, J. G., Powell, R. A., 

and Haydon, D. T. (2010) ‘Building the bridge between animal movement and population 

dynamics.’, Philosophical Transactions of the Royal Society B: Biological 

Sciences, 365(1550), pp. 2289-2301. Available at: https://doi.org/10.1098/rstb.2010.0082 

(Accessed: 20 August 2023). 

 

Moss, C. J., and Poole, J. H. (1983) ‘Relationships and social structure of African 

elephants.’ In Primate Social Relationships: An Integrated Approach; Hinde, R.A., Ed.; 

Blackwell Scientific: Oxford, UK, 1983; pp. 315–325. Available at: bit.ly/45MeOIp 

(Accessed: 28 August 2023). 

 

Moss, C. J. (2001) ‘The demography of an African elephant (Loxodonta africana) 

population in Amboseli, Kenya.’, Journal of Zoology. Cambridge University Press, 255(2), 

pp. 145–156. Available at: doi: 10.1017/S0952836901001212. (Accessed: 24 August 

2023). 

 

Moss, C. J., and Lee, P. C. (2011) ‘Female reproductive strategies: Individual life histories.’ 

In The Amboseli Elephants: A Long-Term Perspective on a Long-Lived Mammal; Moss, 

C.J., Croze, H., Lee, P.C., Eds.; The University of Chicago Press: Chicago, IL, USA, 2011; 

pp. 187–204. Available at: https://doi.org/10.1644/11-MAMM-R-329.1 (Accessed: 28 

August 2023). 

 

 



113 

 

Mramba, R. P., Andreassen, H. P., Mlingi, V., and Skarpe, C. (2019) ‘Activity patterns of 

African elephants in nutrient-rich and nutrient-poor savannas.’, Mammalian Biology, 94, 

pp. 18-24. Available at: https://doi.org/10.1016/j.mambio.2018.12.001 (Accessed: 29 

August 2023). 

 

Mucina, L., and Rutherford, M. C. (2006). The vegetation of South Africa, Lesotho and 

Swaziland. South African National Biodiversity Institute. 

 

Murphy, D., Mumby, H. S., and Henley, M. D. (2020) ‘Age differences in the temporal 

stability of a male African elephant (Loxodonta africana) social network.’, Behavioral 

Ecology, 31(1), pp. 21-31. Available at: https://doi.org/10.1093/beheco/arz152 (Accessed: 

28 August 2023). 

 

Mwalyosi, R. B. (1987) ‘Decline of Acacia tortilis in Lake Manyara National Park, 

Tanzania.’, African Journal of Ecology, 25(1), pp. 51-53. Available at: 

https://doi.org/10.1111/j.1365-2028.1987.tb01090.x (Accessed: 26 August 2023). 

 

Nasseri, N. A., McBrayer, L. D., and Schulte, B. A. (2011) ‘The impact of tree modification 

by African elephant (Loxodonta africana) on herpetofaunal species richness in northern 

Tanzania.’ African Journal of Ecology, 49(2), pp. 133-140. Available at: 

https://doi.org/10.1111/j.1365-2028.2010.01238.x (Accessed: 26 August 2023). 

 

Nathan, R., Getz, W. M., Revilla, E., Holyoak, M., Kadmon, R., Saltz, D., and Smouse, P. 

E. (2008) ‘A movement ecology paradigm for unifying organismal movement research.’, 

Proceedings of the National Academy of Sciences of the United States of America, 105, pp. 

19052–19059. Available at: https ://doi.org/10.1073/pnas.08003 75105 (Accessed: 19 

August 2023). 

 

Ngene, S. M., Skidmore, A. K., Van Gils, H., Douglas-Hamilton, I., and Omondi, P. (2009) 

‘Elephant distribution around a volcanic shield dominated by a mosaic of forest and 

savanna (Marsabit, Kenya).’, African Journal of Ecology, 47(2), pp. 234–245. Available 

at: https://doi.org/10.1111/j.1365-2028.2008.01018.x (Accessed: 13 August 2023). 

 



114 

 

Norton-Griffiths, M. (1975) ‘The numbers and distribution of large mammals in Ruaha 

National Park, Tanzania.’, African Journal of Ecology, 13(2), pp. 121-140. Available at:  

https://doi.org/10.1111/j.1365-2028.1975.tb00127.x (Accessed: 26 August 2023). 

 

O'Connell-Rodwell, C. E., Wood, J. D., Kinzley, C., Rodwell, T. C., Alarcon, C., Wasser, 

S. K., and Sapolsky, R. (2011) ‘Male African elephants (Loxodonta africana) queue when 

the stakes are high.’, Ethology Ecology & Evolution, 23(4), pp. 388-397. Available at: 

https://doi.org/10.1080/03949370.2011.598569 (Accessed: 28 August 2023). 

 

Ottichilo, W. K. (1986) ‘Population estimates and distribution patterns of elephants in the 

Tsavo ecosystem, Kenya, in 1980.’, African Journal of Ecology, 24(1), pp. 53-57. 

Available at: https://doi.org/10.1111/j.1365-2028.1986.tb00342.x (Accessed: 26 August 

2023). 

 

Owen-Smith, R. N. (1988). Megaherbivores: the influence of very large body size on 

ecology. Cambridge university press. 

 

Owen-Smith, R. N. (2002). Adaptive herbivore ecology: from resources to populations in 

variable environments. Cambridge University Press. 

 

Owen-Smith, N. G. I. H., Kerley, G. I. H., Page, B., Slotow, R., and Van Aarde, R. J. (2006) 

‘A scientific perspective on the management of elephants in the Kruger National Park and 

elsewhere: elephant conservation.’, South African journal of science, 102(9), pp. 389-394. 

Available at: https://hdl.handle.net/10520/EJC96609 (Accessed: 12 September 2023). 

 

Owen-Smith, N., Fryxell, J. M., and Merrill, E. H. (2010) ‘Foraging theory upscaled: the 

behavioural ecology of herbivore movement.’, Philosophical Transactions of the Royal 

Society B: Biological Sciences, 365(1550), pp. 2267-2278. Available at: 

https://doi.org/10.1098/rstb.2010.0095 (Accessed: 20 August 2023). 

 

Patterson, T. A., Basson, M., Bravington, M. V., and Gunn, J. S. (2009) ‘Classifying 

movement behaviour in relation to environmental conditions using hidden Markov 

models.’, Journal of Animal Ecology, 78(6), pp. 1113-1123. Available at: 

https://doi.org/10.1111/j.1365-2656.2009.01583.x (Accessed: 22 August 2023). 



115 

 

Patterson, T. A., Thomas, L., Wilcox, C., Ovaskainen, O., and Matthiopoulos, J. (2008) 

‘State–space models of individual animal movement.’, Trends in ecology & 

evolution, 23(2), pp. 87-94. Available at: https://doi.org/10.1016/j.tree.2007.10.009 

(Accessed: 23 August 2023). 

 

Patterson, T. A., Parton, A., Langrock, R., Blackwell, P. G., Thomas, L., and King, R. 

(2017) ‘Statistical modelling of individual animal movement: an overview of key methods 

and a discussion of practical challenges.’, AStA Advances in Statistical Analysis, 101, pp. 

399-438. Available at: https://doi.org/10.1007/s10182-017-0302-7 (Accessed: 13 August 

2023). 

 

Peel, M. J. S., and Martindale, G. J. (2020) Selati Game Reserve Management Plan. 

Version 1.0. Selati Game Reserve, pp. 1-161. Available at: bit.ly/3qD08f9 (Accessed: 15 

August 2023). 

 

Pettorelli, N., Ryan, S., Mueller, T., Bunnefeld, N., Jedrzejewska, B., Lima, M., and 

Kausrud, K. (2011) ‘The Normalized Difference Vegetation Index (NDVI): unforeseen 

successes in animal ecology.’, Clim Res, 46, pp. 15-27. Available 

at: https://doi.org/10.3354/cr00936 (Accessed: 11 September 2023). 

 

Polansky, L., Kilian, W., and Wittemyer, G. (2015) ‘Elucidating the significance of spatial 

memory on movement decisions by African savannah elephants using state–space 

models.’, Proceedings of the Royal Society B: Biological Sciences, 282(1805), pp. 

20143042. Available at: https://doi.org/10.1098/rspb.2014.3042 (Accessed: 27 August 

2023). 

 

Pomerleau, C., Patterson, T. A., Luque, S., Lesage, V., Heide-Jørgensen, M. P., Dueck, L. 

L., and Ferguson, S. H. (2011) ‘Bowhead whale Balaena mysticetus diving and movement 

patterns in the eastern Canadian Arctic: implications for foraging ecology.’, Endangered 

Species Research, 15, pp. 167-177. Available at: https://doi.org/10.3354/esr00373 

(Accessed: 21 August 2023). 

 

 



116 

 

Poole, J. H., Kasman, L. H., Ramsay, E. C., and Lasley, B. L. (1984) ‘Musth and urinary 

testosterone concentrations in the African elephant (Loxodonta africana).’, J. Reprod. 

Fertil., 70(1), pp. 255–260. Available at: https://doi.org/10.1530/jrf.0.0700255 (Accessed: 

28 August 2023). 

 

Poole, J. H. (1987) ‘Rutting Behavior in African Elephants: the Phenomenon of 

Musth.’, Behaviour 102(3-4), pp. 283-316. Available at:  

Brill https://doi.org/10.1163/156853986X00171 (Accessed: 28 August 2023). 

 

Poole, J. H., Lee, P. C., Njiraini, N., and Moss, C. J. (2011) ‘Longevity, Competition, and 

Musth: A Long-term Perspective on Male Reproductive Strategies.’, Oxford Academic, 18, 

pp. 272-288. Available at:  https://doi.org/10.7208/chicago/9780226542263.003.0018 

(Accessed: 24 August 2023). 

 

Porensky, L. M., Bucher, S. F., Veblen, K. E., Treydte, A. C., and Young, T. P. (2013) 

‘Megaherbivores and cattle alter edge effects around ecosystem hotspots in an African 

savanna.’, Journal of Arid Environments, 96, pp. 55-63. Available at:  

https://doi.org/10.1016/j.jaridenv.2013.04.003 (Accessed: 08 September 2023). 

 

Purdon, A., and Van Aarde, R. (2017) ‘Water provisioning in Kruger National Park alters 

elephant spatial utilisation patterns.’, Journal of Arid Environments, 141, pp. 45-51. 

Available at: https://doi.org/10.1016/j.jaridenv.2017.01.014 (Accessed: 30 August 2023). 

 

Rasmussen, L. E. L., Hall-Martin, A. J., and Hess, D. L. (1996) ‘Chemical profiles of male 

African elephants, Loxodonta africana: Physiological and ecological implications.’, 

Journal of Mammalogy, 77(2), pp. 422-439. Available at: https://doi.org/10.2307/1382819 

(Accessed: 28 August 2023). 

 

Ripple, W. J., Newsome, T. M., Wolf, C., Dirzo, R., Everatt, K. T., Galetti, M., Hayward, 

M. W., H. Kerley, G. I., Levi, T., Lindsey, P. A., Macdonald, D. W., Malhi, Y., Painter, L. 

E., Sandom, C. J., Terborgh, J., and Valkenburgh, B. V. (2015) ‘Collapse of the world’s 

largest herbivores.’, Science Advances, 1(4), pp. 1-11. Available at: https://doi.org/1400103 

(Accessed: 24 August 2023). 

 



117 

 

Russo, N. J., Davies, A. B., Blakey, R. V., Ordway, E. M., and Smith, T. B. (2023) 

‘Feedback loops between 3D vegetation structure and ecological functions of animals.’, 

Ecology Letters, 26(9), pp. 1597-1613. Available at: https://doi.org/10.1111/ele.14272 

(Accessed: 08 September 2023). 

 

Rutherford, M. C., Mucina, L., and Powrie, L. W. (2006) ‘Biomes and bioregions of 

southern Africa.’, The vegetation of South Africa, Lesotho and Swaziland, 19, pp. 30-51. 

Available at: bit.ly/3QNMwIK (Accessed: 15 August 2023). 

 

Sach, F., Dierenfeld, E. S., Langley-Evans, S. C., Watts, M. J., and Yon, L. (2019) ‘African 

savanna elephants (Loxodonta africana) as an example of a herbivore making movement 

choices based on nutritional needs.’, PeerJ, 7, pp. e6260. Available at: 

https://doi.org/10.7717/peerj.6260 (Accessed: 10 September 2023). 

 

Schick, R. S., Loarie, S. R., Colchero, F., Best, B. D., Boustany, A., Conde, D. A., Halpin, 

P. N., Joppa, L. N., McClellan, C. M., and Clark, J. S. (2008) ‘Understanding movement 

data and movement processes: Current and emerging directions.’, Ecology Letters, 11(12), 

pp. 1338-1350. Available at: https://doi.org/10.1111/j.1461-0248.2008.01249.x (Accessed: 

22 August 2023). 

 

Schulte, B. A., and LaDue, C. A. (2021) ‘The Chemical Ecology of Elephants: 21st Century 

Additions to Our Understanding and Future Outlooks.’, Animals, 11(2860), pp. 1-18. 

Available at: https:// doi.org/10.3390/ani11102860 (Accessed: 28 August 2023). 

 

Schuttler, S. G., Philbrick, J. A., Jeffery, K. J., and Eggert, L. S. (2014) ‘Fine-Scale Genetic 

Structure and Cryptic Associations Reveal Evidence of Kin-Based Sociality in the African 

Forest Elephant.’, PLOS ONE, 9(2), pp. e88074. Available at: 

https://doi.org/10.1371/journal.pone.0088074 (Accessed: 28 August 2023). 

 

Seager, S. (2023) Personal Communication. Selati Game Reserve, South Africa, 2-29 June 

2023. Steve Seager, Wildlife Manager of the Selati Game Reserve. 

 

Selati Game Reserve (2017). Our Research – Selati Game Reserve. Available at: 

http://selatigamereserve.co.za/our-research/ (Accessed:14 August 2023). 



118 

 

Selier, S. A. J., Slotow, R. and Balfour, D. (2018) ‘Management of African elephant 

populations in small fenced areas: Current practices, constraints and recommendations.’, 

Bothalia, 48(2), pp. a2414. Available at:  https://doi. org/10.4102/abc.v48i2.2414 

(Accessed: 31 August 2023). 

 

Senft, R. L., Coughenour, M. B., Bailey, D. W., Rittenhouse, L. R., Sala, O. E., and Swift, 

D. M. (1987) ‘Large Herbivore Foraging and Ecological Hierarchies.’, BioScience, 37(11), 

pp. 789–799. Available at: https://doi.org/10.2307/1310545 (Accessed: 20 August 2023). 

 

Shaffer, L. J., Khadka, K. K., and Naithani, K. J. (2019) ‘Human-Elephant Conflict: A 

Review of Current Management Strategies and Future Directions.’, Frontiers in Ecology 

and Evolution, 6, pp. 1-12. Available at: https://doi.org/10.3389/fevo.2018.00235 

(Accessed: 23 August 2023). 

 

Shannon, G., Page, B., Slotow, R. and Duffy, K. (2006) ‘African elephant home range and 

habitat selection in Pongola Game Reserve, South Africa’, African Zoology, 41(1), pp. 37-

44. Available at: http://dx.doi.org/10.1080/15627020.2006.11407333 (Accessed: 26 

August 2023). 

 

Shannon, G., Page, B. R., Mackey, R. L., Duffy, K. J., and Slotow, R. (2008) ‘Activity 

Budgets and Sexual Segregation in African Elephants (Loxodonta africana).’, Journal of 

Mammalogy, 89(2), pp. 467-476. Available at: https://doi.org/10.1644/07-MAMM-A-

132R.1 (Accessed: 29 August 2023). 

 

Shannon, G., Matthews, W. S., Page, B. R., Parker, G. E., and Smith, R. J. (2009) ‘The 

effects of artificial water availability on large herbivore ranging patterns in savanna 

habitats: A new approach based on modelling elephant path distributions.’, Diversity and 

Distributions, 15(5), pp. 776-783. Available at: https://doi.org/10.1111/j.1472-

4642.2009.00581.x (Accessed: 08 September 2023). 

 

Shannon, G., Page, B. R., Duffy, K. J., and Slotow, R. (2010) ‘The ranging behaviour of a 

large sexually dimorphic herbivore in response to seasonal and annual environmental 

variation.’, Austral Ecology, 35(7), pp. 731-742. Available at: 

https://doi.org/10.1111/j.1442-9993.2009.02080.x (Accessed: 29 August 2023). 



119 

 

Shannon, G., Thaker, M., Vanak, A. T., Page, B. R., Grant, R., and Slotow, R. (2011) 

‘Relative impacts of elephant and fire on large trees in a savanna 

ecosystem.’, Ecosystems, 14, pp. 1372-1381. Available at: https://doi.org/10.1007/s10021-

011-9485-z (Accessed: 12 September 2023). 

 

Sheil, D., and Salim, A. (2006) ‘Forest Tree Persistence, Elephants, and Stem Scars.’ 

Biotropica, 36(4), pp. 505-521. Available at: https://doi.org/10.1111/j.1744-

7429.2004.tb00346.x (Accessed: 27 August 2023). 

 

Shoshani, J., Sanders, W. J., and Tassy, P. (2001) ‘Elephants and other proboscideans: a 

summary of recent findings and new taxonomic suggestions.’ In La terra degli Elefanti–

The world of Elephants, Proceedings of the 1st International Congress, pp. 676-679. 

Available at: bit.ly/3PynagP (Accessed: 24 August 2023). 

 

Shoshani, J., and Tassy, P. (2004) ‘Advances in proboscidean taxonomy & classification, 

anatomy & physiology, and ecology & behavior.’, Quaternary International, 126-128, pp. 

5-20. Available at: https://doi.org/10.1016/j.quaint.2004.04.011 (Accessed: 24 August 

2023). 

 

Siegel, M. (2023) Personal Communication. Selati Game Reserve, South Africa, 2-29 June 

2023. Madeline Siegel, Research Coordinator of the Selati Game Reserve 

 

Slotow, R., Van Dyk, G., Poole, J., Page, B., and Klocke, A. (2000) ‘Older bull elephants 

control young males.’, Nature, 408(6811), pp. 425-426. Available at: 

https://doi.org/10.1038/35044191 (Accessed: 24 August 2023). 

 

Slotow, R., Garai, M. E., Reilly, B., Page, B., and Carr, R. D. (2005) ‘Population dynamics 

of elephants re-introduced to small fenced reserves in South Africa.’, South African 

Journal of Wildlife Research-24-month delayed open access, 35(1), pp. 23-32. Available 

at: https://hdl.handle.net/10520/EJC117208 (Accessed: 31 August 2023). 

 

Slotow, R. (2012) ‘Fencing for Purpose: A Case Study of Elephants in South Africa.’ In: 

Somers, M., Hayward, M. (eds) Fencing for Conservation. Springer, New York, NY. 

Available at: https://doi.org/10.1007/978-1-4614-0902-1_6 (Accessed: 31 August 2023). 



120 

 

Smit, I. P., Grant, C. C., and Devereux, B. J. (2007) ‘Do artificial waterholes influence the 

way herbivores use the landscape? Herbivore distribution patterns around rivers and 

artificial surface water sources in a large African savanna park.’, Biological Conservation, 

136(1), pp. 85-99. Available at: https://doi.org/10.1016/j.biocon.2006.11.009 (Accessed: 

10 September 2023). 

 

Songhurst, A., McCulloch, G., and Coulson, T. (2016) ‘Finding pathways to human – 

Elephant coexistence: A risky business.’ Oryx, 50, pp. 713–720. Available at: https 

://doi.org/10.1017/S0030 60531 5000344 (Accessed: 30 August 2023). 

 

Spiegel, O., Leu, S. T., Bull, C. M., and Sih, A. (2017) ‘What's your move? Movement as 

a link between personality and spatial dynamics in animal populations.’, Ecology Letters, 

20(1), pp. 3-18. Available at: https://doi.org/10.1111/ele.12708 (Accessed: 20 August 

2023). 

 

Ssali, F., Sheil, D., and Nkurunungi, J. B. (2013) ‘How selective are elephants as agents of 

forest tree damage in Bwindi Impenetrable National Park, Uganda?’, African Journal of 

Ecology, 51(1), pp. 55-65. Available at: https://doi.org/10.1111/aje.12006 (Accessed: 27 

August 2023). 

 

Stevens, N., Erasmus, B. F. N., Archibald, S., and Bond, W. J. (2016) ‘Woody 

encroachment over 70 years in South African savannahs: overgrazing, global change or 

extinction aftershock?.’, Philosophical Transactions of the Royal Society B: Biological 

Sciences, 371(1703), pp.  20150437. Available at: https://doi.org/10.1098/rstb.2015.0437 

(Accessed: 26 August 2023). 

 

Stillfried, M., Gras, P., Börner, K., Göritz, F., Painer, J., Röllig, K., Wenzler, M., Hofer, H., 

and Ortmann, S. (2017) ‘Secrets of Success in a Landscape of Fear: Urban Wild Boar 

Adjust Risk Perception and Tolerate Disturbance.’, Frontiers in Ecology and Evolution, 5, 

pp. 310590. Available at: https://doi.org/10.3389/fevo.2017.00157 (Accessed: 21 August 

2023). 

 



121 

 

Stokke, S., and Du Toit, J. T. (2002) ‘Sexual segregation in habitat use by elephants in 

Chobe National Park, Botswana.’, African Journal of Ecology, 40(4), pp. 360-371. 

Available at: https://doi.org/10.1046/j.1365-2028.2002.00395.x (Accessed: 30 August 

2023). 

 

Taher, T. M., Lihan, T., Arifin, N. A. T., Khodri, N. F., Mustapha, M. A., Patah, P. A., Razali, 

S. H. A., and Nor, S. M. (2021) ‘Characteristic of habitat suitability for the Asian elephant 

in the fragmented Ulu Jelai Forest Reserve, Peninsular Malaysia.’, Tropical Ecology, 

62(3), pp. 347–358. Available at: https://doi.org/10.1007/s42965-021-00154-5 (Accessed: 

13 August 2023). 

 

Talukdar, N. R., Choudhury, P., Ahmad, F., Ahmed, R., Ahmad, F., and Al-Razi, H. (2020) 

‘Habitat suitability of the Asiatic elephant in the trans-boundary Patharia Hills Reserve 

Forest, northeast India.’, Modeling Earth Systems and Environment, 6(3), pp. 1951–1961. 

Available at: https://doi.org/10.1007/s40808-020-00805-x (Accessed: 13 August 2023). 

 

Taylor, L. A., Vollrath, F., Lambert, B., Lunn, D., Douglas‐Hamilton, I., and Wittemyer, 

G. (2020) ‘Movement reveals reproductive tactics in male elephants.’, Journal of Animal 

Ecology, 89(1), pp. 57–67. Available at: https://doi.org/10.1111/1365-2656.13035 

(Accessed: 14 August 2023). 

 

Taylor, L. A., Wittemyer, G., Lambert, B., Douglas-Hamilton, I., and Vollrath, F. (2022) 

‘Movement behaviour after birth demonstrates precocial abilities of African savannah 

elephant, Loxodonta africana, calves.’, Animal Behaviour, 187, pp. 331-353. Available at: 

https://doi.org/10.1016/j.anbehav.2022.03.002 (Accessed: 13 September 2023). 

 

Teren, G., Owen-Smith, N., and N. Erasmus, B. F. (2018) ‘Elephant-mediated 

compositional changes in riparian canopy trees over more than two decades in northern 

Botswana.’, Journal of Vegetation Science, 29(4), pp. 585-595. Available at; 

https://doi.org/10.1111/jvs.12638 (Accessed: 25 August 2023). 

 

 



122 

 

Thirgood, S., Mosser, A., Tham, S., Hopcraft, G., Mwangomo, E., Mlengeya, T., Kilewo, 

M., Fryxell, J., E. Sinclair, A. R., and Borner, M. (2004) ‘Can parks protect migratory 

ungulates? The case of the Serengeti wildebeest.’, Animal Conservation, 7(2), pp. 113-120. 

Available at:  https://doi.org/10.1017/S1367943004001404 (Accessed: 22 August 2023). 

 

Thompson, K. E., Ford, A., Esteban, G., Poupard, A., Zoon, K. and Pettorelli, N. (2022) 

‘Impacts of African savannah elephants (Loxodonta africana) on tall trees and their 

recovery within a small, fenced reserve in South Africa.’, African Journal of 

Ecology, 60(3), pp. 357– 366. Available at: https://doi.org/10.1111/aje.12963 (Accessed: 

25 August 2023). 

 

Thouless, C., Dublin, H. T., Blanc, J., Skinner, D. P., Daniel, T. E., Taylor, R., and Bouché, 

P. (2016) ‘African elephant status report 2016.’, Occasional paper series of the IUCN 

Species Survival Commission, 60, pp. 309-319. Available at: bit.ly/44LGrjl (Accessed: 23 

August 2023). 

 

Towner, A. V., Leos-Barajas, V., Langrock, R., Schick, R. S., Smale, M. J., Kaschke, T., D. 

Jewell, O. J., and Papastamatiou, Y. P. (2016) ‘Sex-specific and individual preferences for 

hunting strategies in white sharks.’ Functional Ecology, 30(8), pp. 1397-1407. Available 

at: https://doi.org/10.1111/1365-2435.12613 (Accessed: 23 August 2023). 

 

Trombulak, S. C., and Frissell, C. A. (2000) ‘Review of Ecological Effects of Roads on 

Terrestrial and Aquatic Communities.’, Conservation Biology, 14(1), pp. 18-30. Available 

at:  https://doi.org/10.1046/j.1523-1739.2000.99084.x (Accessed: 10 September 2023). 

 

Tsalyuk, M., Kilian, W., Reineking, B., and Getz, W. M. (2019) ‘Temporal variation in 

resource selection of African elephants follows long-term variability in resource 

availability.’, Ecological Monographs, 89(2), pp. e01348. Available at: 

https://doi.org/10.1002/ecm.1348 (Accessed: 27 August 2023). 

 

Valeix, M., Fritz, H., Sabatier, R., Murindagomo, F., Cumming, D., and Duncan, P. (2011) 

‘Elephant-induced structural changes in the vegetation and habitat selection by large 

herbivores in an African savanna.’ Biological Conservation, 144(2), pp. 902-912. Available 

at:  https://doi.org/10.1016/j.biocon.2010.10.029 (Accessed: 26 August 2023). 



123 

 

van de Kerk, M., Onorato, D. P., Criffield, M. A., Bolker, B. M., Augustine, B. C., 

McKinley, S. A., and Oli, M. K. (2015) ‘Hidden semi-Markov models reveal multiphasic 

movement of the endangered Florida panther.’, Journal of Animal Ecology, 84(2), pp. 576-

585. Available at: https://doi.org/10.1111/1365-2656.12290 (Accessed: 23 August 2023). 

 

Vanak, A., Thaker, M., and Slotow, R. (2010) ‘Do fences create an edge-effect on the 

movement patterns of a highly mobile mega-herbivore?’, Biological Conservation, 

143(11), pp. 2631–2637. Available at: https://doi.org/10.1016/j.biocon.2010.07.005 

(Accessed: 31 August 2023). 

 

Vanak, A. T., Shannon, G., Thaker, M., Page, B., Grant, R., and Slotow, R. (2012) 

‘Biocomplexity in large tree mortality: Interactions between elephant, fire and landscape 

in an African savanna.’, Ecography, 35(4), pp. 315-321. Available at: 

https://doi.org/10.1111/j.1600-0587.2011.07213.x (Accessed: 12 September 2023). 

 

Venter, J. A., Prins, H. H. T., Mashanova, A., de Boer, W. F., and Slotow, R. (2015) 

‘Intrinsic and extrinsic factors influencing large African herbivore movements.’, 

Ecological Informatics, 30, pp. 257–262. Available at: https 

://doi.org/10.1016/j.ecoinf.2015.05.006 (Accessed: 20 August 2023). 

 

Vogel, S. M., Lambert, B., Songhurst, A. C., McCulloch, G. P., Stronza, A. L., and Coulson, 

T. (2020) ‘Exploring movement decisions: Can Bayesian movement-state models explain 

crop consumption behaviour in elephants (Loxodonta africana)?’, Journal of Animal 

Ecology, 89(4), pp. 1055-1068. Available at: https://doi.org/10.1111/1365-2656.13177 

(Accessed: 21 August 2023). 

 

Von Gerhardt, K., Van Niekerk, A., Kidd, M., Samways, M., and Hanks, J. (2014) ‘The 

role of elephant Loxodonta africana pathways as a spatial variable in crop-raiding 

location.’, Oryx, 48(3), pp. 436–444. Available at: 

https://doi.org/10.1017/S003060531200138X (Accessed: 30 August 2023). 

 

 



124 

 

Wall, J., Wittemyer, G., Klinkenberg, B., LeMay, V., and Douglas-Hamilton, I. (2013) 

‘Characterizing properties and drivers of long distance movements by elephants 

(Loxodonta africana) in the Gourma, Mali.’, Biological Conservation, 157, pp. 60-68. 

Available at: https://doi.org/10.1016/j.biocon.2012.07.019 (Accessed: 31 August 2023). 

 

Wang, Y., Smith, J. A., and Wilmers, C. C. (2017) ‘Residential development alters 

behavior, movement, and energetics in an apex predator, the puma.’, PLOS ONE, 12(10), 

pp. e0184687. Available at: https://doi.org/10.1371/journal.pone.0184687 (Accessed: 20 

August 2023). 

 

Webber, Q. M., and Vander Wal, E. (2017) ‘An evolutionary framework outlining the 

integration of individual social and spatial ecology.’, Journal of Animal Ecology, 87(1), 

pp. 113-127. Available at: https://doi.org/10.1111/1365-2656.12773 (Accessed: 27 August 

2023). 

 

Western, D. (1989) ‘The ecological role of elephants in Africa.’, Pachyderm, 12, pp. 1-49. 

Available at: bit.ly/44OyYA9 (Accessed: 24 August 2023). 

 

Whoriskey, K., Auger-Méthé, M., Albertsen, C. M., Whoriskey, F. G., Binder, T. R., 

Krueger, C. C., and Flemming, J. M. (2017) ‘A hidden Markov movement model for 

rapidly identifying behavioral states from animal tracks.’, Ecology and Evolution, 7(7), pp. 

2112-2121. Available at: https://doi.org/10.1002/ece3.2795 (Accessed: 21 August 2023). 

 

Whyte, I. J., Biggs, H. C., Gaylard, A. and Braack, L. E. O. (1999) ‘A new policy for the 

management of the Kruger National Park’s elephant population.’, Koedoe, 42(1), pp. 111–

132. Available at: https://doi.org/10.4102/koedoe.v42i1.228 (Accessed: 30 August 2023). 

 

Whyte, I. (2001). Headaches and heartaches: The elephant management dilemma. In D. 

Schmidtz, & E. Willot (Eds.). Environmental ethics: Introductory readings (pp. 293–305). 

New York: Oxford University Press. 

 

 

 



125 

 

William, G., Sonia, S., Christophe, B., Atle, M., Nicolas, M., Maryline, P., and Clément, 

C. (2018) ‘Same habitat types but different use: Evidence of context-dependent habitat 

selection in roe deer across populations.’, Scientific Reports, 8(1), pp. 1-13. Available at: 

https://doi.org/10.1038/s41598-018-23111-0 (Accessed: 27 August 2023). 

 

Williams, H. F., Bartholomew, D. C., Amakobe, B., and Githiru, M. (2018) ‘Environmental 

factors affecting the distribution of African elephants in the Kasigau wildlife corridor, SE 

Kenya.’, African Journal of Ecology, 56(2), pp. 244-253. Available at: 

https://doi.org/10.1111/aje.12442 (Accessed: 08 September 2023). 

 

Wittemyer, G., Douglas-Hamilton, I., and Getz, W. (2005) ‘The socioecology of elephants: 

Analysis of the processes creating multitiered social structures.’, Animal Behaviour, 69(6), 

pp. 1357-1371. Available at:  https://doi.org/10.1016/j.anbehav.2004.08.018 (Accessed: 27 

August 2023). 

 

Wittemyer, G., and Getz, W. (2007) ‘Hierarchical dominance structure and social 

organization in African elephants, Loxodonta africana.’, Animal Behaviour, 73(4), pp. 671-

681. Available at: https://doi.org/10.1016/j.anbehav.2006.10.008 (Accessed: 28 August 

2023). 

 

Wittemyer, G., Getz, W.M., Vollrath, F., and Douglas-Hamilton, I. (2007) ‘Social 

dominance, seasonal movements, and spatial segregation in African elephants: a 

contribution to conservation behavior.’, Behavioral Ecology and Sociobiology, 61, pp. 

1919–1931. Available at: https://doi.org/10.1007/s00265-007-0432-0 (Accessed: 27 

August 2023). 

 

Wittemyer, G., Polansky, L., and Getz, W. M. (2008) ‘Disentangling the effects of forage, 

social rank, and risk on movement autocorrelation of elephants using Fourier and wavelet 

analyses.’, Proceedings of the National Academy of Sciences, 105(49), pp. 19108-19113. 

Available at:  https://doi.org/10.1073/pnas.0801744105 (Accessed: 22 August 2023). 

 

Wittemyer, G., Daballen, D., and Douglas-Hamilton, I. (2013) ‘Comparative Demography 

of an At-Risk African Elephant Population.’ PLOS ONE, 8(1), pp. e53726. Available at: 

https://doi.org/10.1371/journal.pone.0053726 (Accessed: 26 August 2023). 



126 

 

Wittemyer, G., Keating, L. M., Vollrath, F., and Douglas-Hamilton, I. (2017) ‘Graph theory 

illustrates spatial and temporal features that structure elephant rest locations and reflect 

risk perception.’, Ecography, 40(5), pp. 598-605. Available at: 

https://doi.org/10.1111/ecog.02379 (Accessed: 29 August 2023). 

 

Woodroffe, R., Hedges, S., and Durant, S. M. (2014) ‘To Fence or Not to Fence.’, Science, 

344(6149), pp. 46-48. Available at: https://doi.org/1246251 (Accessed: 30 August 2023). 

 

Young, T. P., Patridge, N., and Macrae, A. (1995) ‘Long-Term Glades in Acacia Bushland 

and Their Edge Effects in Laikipia, Kenya.’, Ecological Applications, 5(1), pp. 97–

108. Available at: doi:10.2307/1942055 (Accessed: 08 September 2023). 

 

Young, K. D., Ferreira, S. M., and Van Aarde, R. J. (2009a) ‘Elephant spatial use in wet 

and dry savannas of southern Africa.’, Journal of Zoology, 278(3), pp. 189-205. Available 

at: https://doi.org/10.1111/j.1469-7998.2009.00568.x (Accessed: 26 August 2023). 

 

Young, K. D., Ferreira, S. M., and Van Aarde, R. J. (2009b) ‘The influence of increasing 

population size and vegetation productivity on elephant distribution in the Kruger National 

Park.’, Austral Ecology, 34(3), pp. 329-342. Available at: https://doi.org/10.1111/j.1442-

9993.2009.01934.x (Accessed: 29 August 2023). 

 

 

 

 

 

 

 

 

 

 

 

 



127 

 

7 APPENDIX I  

 

This appendix shows some photographs of the two matriarchs studied in this paper: Elza 

(Fig. 1-7) and Jean (Fig.8-10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Close-up of Elza in Selati Game Reserve (Provided by: Selati Game Reserve). 
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Figure 2. Photography shot by a camera trap. Date and time are shown in the photo 

(Provided by Selati Game Reserve). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Photography shot by a camera trap. Date and time are shown in the photo 

(Provided by Selati Game Reserve). 
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Figure 4. Elza with other elephants of its herd (Provided by Selati Game Reserve). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Elza walking with its herd (Provided by Selati Game Reserve). 
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Figure 6. Elza walking with its herd (Provided by Selati Game Reserve). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Elza walking with its herd (Provided by Selati Game Reserve). 
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 Figurre 8. Close-up of Jean (Provided by Selati Game Reserve). 
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Figure 9. Jean (Provided by Selati Game Reserve). 

 

 

 

 

Figure 10. Jean eating mopane leaves (Provided by Selati Game Reserve). 
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8 APPENDIX II 

 

This Appendix contains all the relevant maps about the covariates used in this study. 

Particularly, the road network (Fig.1), the distribution of water points, divided into natural 

and artificial, as well as into perennial and seasonal (Fig.2), and the graphical outputs of 

NDVI calculation for each month (Fig. 3-9). 

 

 

 

 

Figure 1. Road/path network of Selati Game Reserve (Created with QGIS Desktop by 

Zelia Romano). 
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Figure 2. Distribution of all water points present at Selati Game Reserve (Created with 

QGIS Desktop by Zelia Romano). 
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Figure 3. NDVI output for the month of June 2022 (Created with QGIS Desktop by Zelia 

Romano). 
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Figure 4. NDVI output for the month of July 2022 (Created with QGIS Desktop by Zelia 

Romano). 
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Figure 5. NDVI output for the month of August 2022 (Created with QGIS Desktop by 

Zelia Romano). 
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Figure 6. NDVI output for the month of September 2022 (Created with QGIS Desktop by 

Zelia Romano). 
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Figure 7. NDVI output for the month of October 2022 (Created with QGIS Desktop by 

Zelia Romano). 

 

 

 

 

 



140 

 

 

 

 

 

 

 

 

 

Figure 8. NDVI output for the month of November 2022 (Created with QGIS Desktop by 

Zelia Romano). 
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Figure 9. NDVI output for the month of December 2022 (Created with QGIS Desktop by 

Zelia Romano). 
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9 APPENDIX III 

Here are reported the details of all the satellite images used for performing the NDVI 

calculation. 

 

Table 1. ID (i.e., tile number), acquisition date, and acquisition time (in UTC) of the 

satellite images used in this study are reported for each month. 

 ID 
Acquisition date 

dd-mm-yyyy 

Acquisition time 

hh:mm:ss 

June 
3227b58e-eb8f-4390-

9d70-f5baf7b3ec5b 
17-06-2022 

07:43:37 / 07:43:39 

07:43:41 / 07:43:43 

July 
c79f6424-73a3-4685-

87a7-39b489900769 
14-07-2022 

07:26:46 / 07:26:48 

07:57:54 / 07:57:56 

August 
58a06dbb-319c-494d-

b3e0-89d86c94a969 
18-08-2022 

07:11:43 / 07:11:46 

07:57:05 / 07:57:07 

September 
347489d1-722f-42c5-

9b0c-708a7675dca9 
16-09-2022 

07:42:16 / 07:42:19 

07:42:21/ 07:43:59 

07:44:01 

October 
e0e2792a-4ec3-4458-

b881-245886b2f102 
04-10-2022 

07:07:26 / 07:07:28 

07:30:08 / 07:30:10 

07:52:39 / 07:52:41 

07:52:43 

November 
e03daeaf-eeda-461a-

8a95-e99f8bfac69b 
17-11-2022 

07:09:17 / 07:09:19 

07:11:52 / 07:11:54 

07:40:45 / 07:40:47 

December 
e2fbc078-3e0d-4ec1-

a031-acd44302ddb2 
24-12-2022 

07:08:29 / 07:08:31 

07:09:32 / 07:41:27 

07:41:29 
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Table 2. Satellite ID, Satellite orbit number, Product level, Product type, Asset type are 

showed for each month in this table. 

 

 
Satellite 

ID 

Satellite 

orbit 

number 

Product 

level 
Product type Asset type 

June 
248f 

2484 

34, 65 

37 
3B Analytic MS 

ortho_analytic_4b_sr 

ortho_analytic_4b_xml 

ortho_udm2 

July 
2262 

240c 

45, 73 

09, 38 
3B Analytic MS 

ortho_analytic_4b_sr 

ortho_analytic_4b_xml 

ortho_udm2 

August 
2432 

240a 

83, 13 

29, 50 
3B Analytic MS 

ortho_analytic_4b_sr 

ortho_analytic_4b_xml 

ortho_udm2 

September 
249a 

2483 

88, 16, 44 

50, 79 
3B Analytic MS 

ortho_analytic_4b_sr 

ortho_analytic_4b_xml 

ortho_udm2 

October 

2447 

2251 

2424 

42, 70 

07, 35 

17, 46, 75 

3B Analytic MS 

ortho_analytic_4b_sr 

ortho_analytic_4b_xml 

ortho_udm2 

November 

245c 

241f 

2461 

47, 62 

48, 81 

09, 44 

3B Analytic MS 

ortho_analytic_4b_sr 

ortho_analytic_4b_xml 

ortho_udm2 

December 

2451 

241e 

2480 

30, 62 

24 

27, 41 

3B Analytic MS 

ortho_analytic_4b_sr 

ortho_analytic_4b_xml 

ortho_udm2 
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10 APPENDIX IV 

 

Maps of Elza’s (Fig. 1-8) and Jean’s (Fig. 9-14) tracks are showed below, each map 

referring to a different month. 
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